Курсовая работа: Цепи Маркова

В других примеров приделы вероятностей при очевидно, не существуют.

Найдем стационарное распределение в примере 1. Нужно найти вектор удовлетворяющий условиям (8):

,

,

;

Отсюда, Таким образом, стационарное распределение существует, но не все координаты векторы положительны.

Для полиномиальной схемы были введены случайные величины, равные чесу исходов данного типа. Введем аналогичные величины для цепей Маркова. Пусть − число попадания системы в состояние за время . Тогда частота попаданий системы в состояние . Используя формулы (9), можно доказать, что при сближается с . Для этого нужно получить асимптотические формулы для и и воспользоваться неравенством Чебышева. Приведем вывод формулы для . Представим в виде

(10)

где , если , и в противном случае. Так как

,

то, воспользовавшись свойством математического ожидания и формулой (9), получим

.

Втрое слагаемое в правой части этого равенства в силу теоремы 1 является частной суммой сходящегося ряда. Положив , получим

(11)

Поскольку

Из формулы (11), в частности, следует, что

при


Так же можно получить формулу для которая используется для вычисления дисперсии.

§5. Доказательство теоремы о предельных вероятностях в цепи Маркова

Докажем сначала две леммы. Положим

Лемма 1. При любых существуют пределы

и

Доказательство. Используя уравнение (3) с получим

Таким образом, последовательности и монотонны и ограничены. Отсюда следует утверждение леммы 1.

Лемма 2. Если выполнены условия теоремы 2, то существуют постоянные , такие, что

К-во Просмотров: 637
Бесплатно скачать Курсовая работа: Цепи Маркова