Курсовая работа: Цифро-аналогові перетворювачі

3. Паралельні ЦАП

ЦАП з сумуванням вагових струмів

Більшість схем паралельних ЦАП засновані на сумуванні струмів, сила кожного з яких пропорційна вазі цифрового війкового розряду, причому повинні сумуватись тільки суми розрядів, значення яких дорівнює 1. Наприклад, потрібно перетворити двійковий 4-розрядний код в аналоговий сигнал струму. У старшого значущого розряду (СЗР) вага дорівнює 23 = 8, у третього 22 = 4, у другого 21 = 2 і у молодшого (МЗР) 20 = 1. Якщо вага МЗР дорівнює струму I1 = 1 мА, то I2 = 2 мА, I3 = 4 мА, I4 = 8 мА. Наприклад, коду 1001 відповідає струм Iвих = 9 мА. Тому потрібна схема, що забезпечує генерацію та комутацію по заданих законах точних вагових струмів. Найпростіша схема показана на рис.5.

Рис.5. Цап з сумуванням вихідних струмів

Опори резисторів вибирають так, щоб при замкнених ключах через них протікав струм відповідний вазі розряду Ключ повинен бути замкнений тоді, коли відповідний йому біт вхідного слова дорівнює одиниці. Вихідний струм визначається співвідношенням

Iвих = = UопD/R0 .

При високій розрядності ЦАП резистори, що задають струм, повинні бути погоджені з високою точністю. Найбільш жорсткі вимоги по точності висуваються к резисторам старших розрядів, оскільки розкид в них не повинен перевищувати струму молодшого розряду. Тому розкид опору у к-му розряді повинен бути меншим, ніж DR/R = 2- k .

З цієї вимоги виникає, що розкид опору резистора, наприклад у 10-му розряді не повинен перевищувати 0,05%.

Розглянута схема має кілька недоліків. По перше, при різних вхідних кодах, струм, що споживається від джерела опорної напруги (ДОН), буде різним, а це впливає на величину вихідної напруги ДОН. По друге, значення опорів вихідних резисторів можуть відрізнятись у тисячі разів, а це робить проблемною реалізацію цих резисторів у напівпровідникових інтегральних мікросхемах. Окрім того, значення опорів старших розрядів у багато розрядних цап може бути зіставленим з опором замкненого ключа, а це приведе до похибки перетворення. По трете, у цій схемі до ключів прикладається значна напруга, що ускладнює їх реалізацію.

Ці недоліки усунуті у схемі ЦАП AD7520 (вітчизняний аналог 572ПА1), що розроблений фірмою AnalogDevices. Ця схема показана на рис.6. У якості ключів тут використовуються МОН-транзистори.


Рис.6. Схема ЦАП з ключами

У цій схемі завдання вагових коефіцієнтів ступенів перетворювача здійснюється за посередництвом послідовного ділення опорної напруги за допомогою резистивної матриці постійного імпедансу. головний елемент такої матриці є подільник напруги, який повинен задовольняти наступній умові: якщо він завантажений опором Rн, то його вхідний опір також повинен приймати значення Rн. Коефіцієнт ослаблення кола a =U2/U1 при цьому завантаженні повинен мати задане значення. При виконанні цих умов одержуємо наступні вирази для опорів

Uвих(N -1) = U1(N - 1) = =

Rp = aRн/(1-a), Rs = (1 - a)Rн.

При війковому кодуванні a = 0,5. Якщо покласти Rн = 2R, то Rs = R, aRp = 2R.

Оскільки у будь-якому положенні перемикачів Sk вони з’єднують нижні виводи резисторів з загальною шиною схеми, джерело опорної напруги навантажене на постійний вхідний опір Rвх = R. Це гарантує незмінність опорної напруги при будь-якому вхідному коді ЦАП. Нижні виводи резисторів 2R матриці при будь-якому положенні перемикачів Sk з’єднані з загальною шиною через низький опір замкнених ключів, тоді напруги на ключах завжди невеликі. Це спрощує побудову ключів та схем керування ними та дозволяє використати опорну напругу з великого діапазону напруг, у тому числі і різної полярності. Оскільки вихідний струм ЦАП залежить від Uоп линійно. перетворювачі цього типу можна використовувати для множення аналогового сигналу (подаючи його на вхід опорної напруги) на цифровий код. Такі ЦАПи називають перемножуючими.

ЦАП на джерелах струму

ЦАП на джерелах струму має більш високу точність. На відміну від попереднього варіанту, у якому вагові струми формуються резисторами порівняно невеликого опору, а тому залежать від опору ключів на навантаження, у даному разі вагові струми забезпечуються транзисторними джерелами струму, що мають високий динамічний опір. Спрощена схема такого ЦАП наведена на рис.7.

Вагові струми формуються за допомогою резистивної матриці. Потенціали баз транзисторів однакові, а щоб були рівними і потенціали емітерів усіх транзисторів, площі Ії емітерів роблять різними у відповідності до вагових коефіцієнтів. Правий резистор матриці підключений не до загальної шини, а до двох паралельно включених однакових транзисторів VT0 та VTн, у результаті чого струм через VT0 дорівнює половині струму через VT1.


Рис.7. ЦАП на джерелах струму

Вихідна напруга для резистивної матриці створюється за допомогою опорного транзистора VTоп та операційного підсилювача ОУ1, вихідна напруга якого встановлюється такою, що колекторний струм транзистора VTоп приймає значення Iоп. Вихідний струм для N-розрядного ЦАП

Iвих = Iоп D/2N .

Формування вихідного сигналу у вигляді напруги

Існує декілька способів формування вихідної напруги для ЦАП з сумуванням вихідних струмів. Два з них показані на рис.8.


Рис.8. а) Формування вихідної напруги за допомогою операційного підсилювача; б) формування вихідної напруги за допомогою резистора.

На рис.8,а наведена схема з перетворювачем струму в напругу на операційому підсилювачі. Ця схема придатна для усіх ЦАП зі струмовим виходом. Оскільки плівкові резистори, що визначають вагові струми ЦАП мають значний температурний коефіцієнт опору, резистор зворотнього зв’язку треба виготовляти на кристалі ЦАП та в тому ж технологічному процесі, що звичайно і робиться. Це дозволить знизити температурну нестабільність перетворювача у 300...400 разів. Вихідна напруга схеми на рис.8,а

К-во Просмотров: 386
Бесплатно скачать Курсовая работа: Цифро-аналогові перетворювачі