Курсовая работа: Цифровой сглаживающий фильтр

Как видно, алгоритмы схожи. Деление на два может быть реализовано с помощью арифметического сдвига аккумулятора путем сочетания инструкций RLC, RAR, RAR. Такая последовательность команд исключает потерю знака из 7-го разряда, а значит, может применяться для положительных и отрицательных чисел. Округление представляет собой сложение с элементом, оказавшимся после деления вне разрядной сетки. При арифметическом сдвиге этот элемент переходит во флаг переноса С, следовательно, для округления может быть использована команда сложения с переносом ADCE, где Е – заранее обнуленный регистр, либо ADCB, когда непосредственно за округлением в алгоритме следует сложение с регистром В. Чтобы не потерять множитель-отсчет, перед сложением с регистром В его необходимо сохранить, например, в регистр С, после сложения восстановить в аккумулятор и продолжать операции арифметического сдвига.

Умножение на 0.1 можно выполнить более просто, если учесть, что С(b0 +b1 +b2 +b3 +b4 )=С(2b0 +2b1 +b2 )=1 – это легко проверить. Домножив обе части равенства на величину преобразованного в дополнительный код отсчета, получим:

Xi = 2Cb0 Xi + 2Cb1 Xi +Cb2 Xi = 2*0.4*0.1Xi + 2*0.4*0.65Xi +0.4Xi

Значение 0.4*0.1*Xi является искомым и должно быть записано в ячейку 500С:


Алгоритм умножения на 0.1 должен реализовать данное выражение, причем исходные данные в числителе известны, если преобразованный отсчет Xi перед умножением на 0.4 сохранить в регистре, например, D. Значение 0.4*0.65*Xi на данном этапе находится в аккумуляторе. Умножение его на 2 можно выполнить последовательностью инструкций RAL, RAL, RRC, ANI11111110(2) , позволяющей сохранить знак числа и исключить нечетность из-за перехода единицы в нулевой разряд аккумулятора из флага переноса.

Теперь рабочая область ОЗУ подготовлена к суммированию в соответствии с выражением (1), как показано на рис. . Суммируется содержимое ячеек с адресами 500С, 5008, 5004, 5002, 5000. Для этого можно использовать инструкцию ADD M, а в качестве указателя на адреса – регистр HL. После суммирования данные готовы к выводу в порт.

Далее содержимое ячеек 5003 – 500С подлежит переносу на три ячейки вверх – таким образом текущий отсчет становится предыдущим, предыдущий – препредыдущим и т. д. Сдвиг удобно осуществлять парами, используя для этого инструкции LHLD и SHLD.

Последней операцией основной программы является сброс входного триггера входа микропроцессора RST 7.5., после чего вход будет воспринимать сигнал прерывания как команду рестарта микропроцессора. Для сброса триггера просто переустанавливается маска прерываний, описанная выше.

Алгоритм работы основной программы ( алгоритм фильтрации ) выглядит следующим образом:

4. Разработка и отладка программного обеспечения

Программа, реализующая приведенные выше алгоритмы, разработана для микропроцессора КР1821ВМ85. При создании программы использовался в качестве компилятора кросс-ассемблер ASM80, позволяющий с помощью директив и меток, располагаемых в тексте программы, уйти от прямых физических адресов. Для пошагового анализа работы программы, выявления и исправления ошибок в реализации алгоритмов использовался отладчик DEB80. Исходный текст программы, а также ее листинг с указанием физических адресов, приведены ниже. Основная часть программы, реализующая алгоритм фильтрации, занимает ячейки ПЗУ с адреса 0500(16) по 0598(16) включительно, то есть 152 байта памяти. На исполнение основной части программы с момента рестарта RST 7.5. уходит 727 машинных тактов при максимально допустимом числе их N=1000, то есть программа, работая, укладывается в интервал дискретизации с запасом по времени » 25 %, что означает выполнение одного из требований к устройству – обработка сигнала в реальном масштабе времени.

Ввиду отсутствия в обобщенной структуре фильтра обратных связей и конечности цифровой импульсной характеристики фильтр абсолютно устойчив, то есть любое входное возмущение не приведет к генерации.

Исходя из того, что переходная характеристика не имеет выброса и стремится к единице, можно утверждать, что при условии корректной реализации алгоритма не будет происходить переполнения разрядной сетки, то есть переходной процесс не превышает постоянный входной уровень, а установившийся режим в точности повторяет его. Это относится и к максимально допустимым цифровым значениям входных отсчетов. Переполнение может иметь место при некоторых упущениях в реализованной программе, например, когда результаты всех умножений ( на 0.4, 0.65, 0.1 ) округлятся в большую сторону. Однако особый способ реализации умножения на 0.1 ( вычитанием из единицы ) исключает такую возможность.

С целью проверки на переполнение был осуществлен ручной и автоматический расчет работы программы. В качестве исходных принимались два критических случая – минимального и максимального постоянных уровней на входе.

В первом случае от АЦП приходил максимальный отсчет FFh, который после перехода к дополнительному коду принимал значение 7Fh. Далее это значение умножалось согласно алгоритму на 0.4, и результат 33hзаписывался в ячейку 500А. Он же умножался затем на 0.65 ( результат 23h – в ячейку 500В ) и на 0.1 ( результат 03h – в ячейку 500С ). Перед суммированием эти результаты были занесены в ячейки 5000 – 5009 согласно рис. . В итоге суммирование дало результат, равный входному: 03h + 23h + 33h + 23h + 03h = 7Fh – он и был отправлен в порт В.

Во втором случае входной отсчет имел значение 00h, после преобразования 80h, после умножения - CDh, E0hи FАhв ячейках 500А, 500В и 500С соответственно. Эти же значения помещаются в другие рабочие ячейки, соответствующие алгоритму суммирования. Результат суммирования: FAh + E0h + CDh + E0h + FAh = 81h – был отправлен в порт.

И в том, и в другом случае переполнения не произошло.

5. Погрешность расчета, связанная с конечным представлением коэффициентов

Ранее уже отмечалось, что заданные коэффициенты представлены округленно: 0.4 как 0.3984325, 0.65 как 0.6484375. Нетрудно показать, что умножение на 0.1 фактически является умножением на 0.1015625. Поэтому реальная амплитудно-частотная характеристика фильтра будет отличаться от заданной с помощью передаточной функции. Однако отличия истинных коэффициентов от заданных столь мало, что реальная АЧХ практически не отличается от заданной, показанной на рис. .

Другим существенным фактором искажений является конечное представление самих отсчетов. Так, после умножения на 0.4, а затем на 0.1, существенными остаются только разряды с 5-го по 7-й, причем 7-й – знаковый. Остальные 5 разрядов по сути отбрасываются, то есть возможна ситуация, когда при изменении значения отсчета в пределах 1Fhрезультат умножения на коэффициент 0.1 остается неизменным. Это также влияет на погрешность при расчете.

6. Описание принципиальной схемы устройства

Принципиальная схема цифрового фильтра поясняет электрические соединения между отдельными элементами, которыми являются:

1) цифровые микросхемы комплекта КР1821, обеспечивающие минимальную конфигурацию микропроцессорной системы;

2) микросхема аналогово-цифрового преобразователя;

3) микросхема устройства выборки и хранения;

4) схема формирования управляющих стробов, состоящая из двух RC-цепей и элементов И-НЕ, использующихся в качестве инверторов;

5) операционные усилители, служащие в качестве развязывающих элементов и основа схемы смещения и масштабирования;

6) четыре разъема:

а) для входного сигнала ( может использоваться стандартный разъем типа JACK );

К-во Просмотров: 304
Бесплатно скачать Курсовая работа: Цифровой сглаживающий фильтр