Курсовая работа: Цифровой тахометр

Преобразования двоичного кода в двоично-десятичный будет, осуществляется при помощи модуля преобразования в двоично-десятичный код .

Модуль индикации необходим для отображения значения измеряемой частоты.

Обработка данных вводимых из АЦП (выделение знака, определение размерности) осуществляется модулем обработки .

Преобразование значений импульсов в символьное значение для знакоразрядного индикатора осуществляется модулем преобразования в семисегментный код .

Управление работой тахометра в целом будет, осуществляется при помощи микрокомпьютера . Так как микрокомпьютер, является последовательным устройством, которое выполняет одну команду за другой, в модульный состав необходимо включить исполнительный модуль , который будет обеспечивать последовательное исполнение системой функций.

2.2 Выбор соотношения между аппаратными и программными средствами

В результате анализа функций, выполняемых системой, и на основании модульной структуры произведем разбиение системы на аппаратные и программные модулями. Полученная модульная структура цифрового тахометра представлена на рисунке 2.


Рисунок 2 – Соотношения между программными аппаратными модулями в цифровом тахометре

Связь между программными модулями и модулем микрокомпьютера показана двойной стрелкой, так как программные модули реализуются как процедуры микрокомпьютера.

Таким образом, программным методом реализована следующая группа функций: преобразование двоичного кода в двоично-десятичный, обработка данных.

Из выше перечисленных, реализованных программным методом, функций две (преобразование двоичного кода в двоично-десятичный), возможно, было реализовать и аппаратно. Однако они реализованы программно по следующим причинам:

решение этих задач не критично по времени;

реализация данных функции аппаратно сложная задача и требует включения в состав устройства большого количества логических ИМС.

Аппаратным методом реализованы модули аналого-цифрового преобразователя, масштабирующего устройства, модуль переключателя, модуль индикации и преобразователь в семисегментный код.

Модуль преобразователя в семисегментный код строится аппаратно так как его программная реализация потребовало бы вывода двадцатичетырех разрядного слова вместо шестнадцати, что не приведет к уменьшению аппаратных затрат.

Также в состав аппаратных средств вошел микрокомпьютер, который содержит в себе необходимые элементы, позволяющие реализовать все необходимые программные действия системы.


3. П роектирование аппаратных средств системы

3.1 Разработка принципиальной схемы системы

Основу проектируемого устройства составляет центральный процессор (ЦП). В разрабатываемом цифровом тахометре ЦП строится на основе микропроцессора 8086. При разработке структуры блока ЦП возникают задачи разделения (демультиплексирования) шины адреса/данных буферирования шин адреса и шин данных, а также выработка тактовых импульсов и синхронизация сигналов REDY и RESET с тактовыми сигналами микропроцессора.

Первая задача решается с помощью БИС КР580ИР82, выполняющих функции адресной защелки. Поэтому на принципиальной схеме два 8 – битовых регистра КР580ИР82 (DD12 и DD13) обеспечивают запоминание 11 разрядов адреса.

Вторая задача решается с помощью двух 8 – битовых шинных формирователей КР580ВА86 (DD14 и DD15), которые усиливают сигналы системной шины.

Выработка тактовых импульсов и синхронизация сигналов REDY и RESET с тактовыми сигналами микропроцессора выполняется генератором тактовых импульсов (ГТИ) КР1810ГФ84. Ко входом X1 и X2 БИС КР1810ГФ84 (DD6) подключается кварцевый резонатор РК374 (ZQ1) с частотой колебаний – 15 МГц.

На вход RDYБИС КР1810ГФ84 поступает сигнал готовности от блока АЦП.

Сброс МП осуществляется сигналом RESET, который вырабатывается в момент включения питания. Выработка сигнала RESET осуществляется RC цепочкой построенной на элементах C1 и R8. Выбор номиналов элементов C1 и R8 производят исходя из того, что минимальная продолжительность сигнала RESET, при первом включении МП должна составлять не менее 50 мкс. При номиналах C1 = 1мкф и R8 = 200кОм получим длительность сигнала сброса равную:

( 1 )

где Ucc - напряжение источника питания;

Uh - напряжение логической единицы на входе RES.

Из формулы ( 1 ) видно, что при выбранных номиналах элементов достигается необходимая длительность сигнала сброса.

В разрабатываемой системе блок ПЗУ построен из двух включенных параллельно БИС КР556РТ6 (DD16 и DD19) емкостью 2 Кбайта каждая. Адресные входы А0 – А10 каждой бис соединены параллельно и подключены к адресным линиям А0 – А10. Процесс обращения к ПЗУ стробируется сигналами M/IO и RD подаваемыми на входы CS БИС. Выдача данных на шину микропроцессора после установки адресов микросхемой памяти осуществится не позднее чем, через 80 нс. Так как в МП 8086 длительность цикла чтения длится дольше, то выбранные для построения памяти микросхемы смогут передавать информацию с максимальной пропускной способностью шины.

Для преобразования импульса в код используется микросхема АЦП КР1113ПВ1 (DD3). Микросхема КР1113ПВ1 – это биполярный, десяти разрядный АЦП, с динамическим диапазонам от –5.5В до +5.5В и выдачей данных в прямом коде.

Данная микросхема имеет внутренний буфер, что позволяет подключать ее непосредственно к шине данных. Управления началом преобразования и выдачей данных на шину осуществляется логической схемой собранной на элементах DD4, DD5, DD8 и DD11. Если микропроцессор не обращается к АЦП, то низким уровнем на входе логического элемента И (DD8) триггер готовности (DD11) удерживается в единичном состоянии. При этом на входе RDY БИС КР1810ГФ84 присутствует высокий уровень напряжения (устройство готово), а выходы данных АЦП находятся в третьем состоянии. При обращении к АЦП на одном входе элемента И будет присутствовать высокий уровень напряжения, а состояния на другом будет определятся сигналом готовности АЦП. Если данные в АЦП не готовы, то высоким уровнем на входе логического элемента И триггер готовности устанавливается в нулевое состоянии. При этом на входе RDY БИС КР1810ГФ84 присутствует низкий уровень напряжения (устройство не готово), а выходы данных АЦП по прежнему находятся в третьем состоянии. Если же данные в АЦП готовы, то низким уровнем на входе логического элемента И триггер готовности устанавливается в единичное состояние. При этом на входе RDY БИС КР1810ГФ84 появляется высокий уровень напряжения (устройство готово), а на шину АЦП помещает данные.

К-во Просмотров: 761
Бесплатно скачать Курсовая работа: Цифровой тахометр