Курсовая работа: Цитология эукариотических водорослей

Тонкая структура микротрубочек, составляющих наружные дублеты жгутиков и ресничек, стала объектом многочисленных исследований. Подробно были изучены и дублеты жгутиков простейшей монадной зеленой водоросли хламидомонаса. Дублеты образованы субъединицами первичными нитями, в свою очередь состоящими из одного ряда сферических субъединин. Каждый дублет содержит 23 первичные нити: микротрубочка «А» образована 13 первичными нитями, из которых 3 расположены медианно. создавая перегородку между просветами «А» и «В» микротрубочек. «В» микротрубочка включает 10 первичных нитей.

Г. Витман с соавт. разработали методы изоляции жгутиков хламидомонаса и их фракционирования на мембрану, мастигонемы, матрикс и компоненты аксонемы. Наружные дублеты затем были разделены на «А» и «В» микротрубочки и выделена перегородка между ними, образованная тремя первичными нитями. Каждый и) компонентов был изучен электронно-микроскокически и биохимически. Изолированные мастигонемы образованы эллипсоидными субъединицами, соединенными конец к концу, и содержат один гликопротеин. Фракция матрикса включает ряд белков. Изолированные аксонемы удерживают сначала интактную структуру, а дальнейшее их фракционирование осуществляется путем нагревания или под действием детергента. Возрастающие концентрации детергента саркозила растворяют микротрубочки аксонемы в следующем порядке: одна из двух центральных микротрубочек, вторая центральная микротрубочка и наружная стенка «В»микротрубочки дублета, остальные части «В» микротрубочки, наружная стенка «А» трубочки, остаток «А» трубочки, за исключением трех первичных нитей, составляющих «перегородку» между просветами «А» и «В» микротрубочек.

Анализ наружных дублетов показал, что они образованы двумя белками-тубулином 1 и тубулином 2 соответственно с молекулярной массой 56000 и 53000 и разным аминокислотным составом.

Как в микротрубочках «А», так и в микротрубочках «В» присутствуют оба тубулина, в трех же первичных нитях, образующих стенку между просветами «А» и «В» микротрубочек, обнаружен только тубулин 1. В остальных частях микротрубочек каждая первичная нить содержит только один из тубулинов и они чередуются парами: пары первичных нитей, образованных тубулином 1, перемежаются с парами нитей, содержащими тубулин 2.

Кончик – это участок жгута, тупой или слегка заостренный, у которого нарушается описанное для главного стержня жгута нормальное +2 расположение микротрубочек. По мере приближения к кончику утрачивается материал матрикса и периферические дублеты один за другим постепенно теряют одну из микротрубочек, становясь одинарными, но сохраняя при этом изначальное круговое расположение. Затем постепенно сокращается число периферических микротрубочек, пока не останутся только центральные микротрубочки, которые сохраняются почти до самого кончика жгута.

У гамет бурой водоросли эктокарпуса оба жгутика несут длинный, часто закрученный спирально терминальный придаток – акронему, в который из стержня жгута переходят две центральные микротрубочки.

Переходная зона – между свободной частью жгута и базальным телом – внешне легко отличается от стержня, так как здесь жгутик перетянут: жгутиковая мембрана плотно подходит к дублетам аксонемы. У проксимального – морфологически нижнего конца наружной части жгута находится базальный диск, у которого оканчиваются две центральные микротрубочки, Периферические дублеты продолжаются ниже базального диска, где к ним вскоре добавляются дополнительные микротрубочки, превращающие дублеты в триплеты базального тела.

Базальное тело, находящееся в основании каждого жгутика, расположено в цитоплазме вблизи поверхности клетки и представляет собой короткий цилиндр, по периферии которого располагается девять триплетов микротрубочек. Триплеты соединяются друг с другом тонкими нитями между «А» и «С» – микротрубочками соседних триплетов. По-видимому, жгутики всех водорослей имеют «корни», прикрепленные обычно к их базальным телам, закрепляющие эти тела в протопласте. Обычно корни бывают двух типов: группы исчерченных полосатых волокон и группы микротрубочек. Ориентация корней по отношению к базальным телам и в клетке различна. Например, у хламидомонады базальные тела двух жгутиков связаны друг с другом широким полосатым корнем, от которого отходят четыре четырехчленных микротрубчатых корня, идущих назад в клетку непосредственно под цитоплазматической мембраной.

Такая комбинация исчерченных и трубчатых корней встречается часто.

Совсем иной тип «корневой системы» у представителей празинофициевых, хризофитовых, рафидофитовых водорослей. У этих организмов широкая исчерченная лента – ризопласт – тянется непосредственно от базальных тел к ядру, где она, по-видимому, прикрепляется к ядерной оболочке.

В некоторых группах водорослей, например зеленых, особенностям жгутиковых корней в последнее время придается важное значение в связи с выявлением родственных отношений между видами и родами.

При едином общем плане строения жгутики разных водорослей могут отличаться в деталях, причем эти различия весьма константны и характерны для больших групп – отделов.

Эти постоянные различия касаются как особенностей тонкого строения жгута, так и таких признаков, как число жгутиков, место прикрепления, длина, характер поверхности и пр. Так, у диатомовых водорослей в жгутике сперматозоидов отсутствуют центральные микротрубочки и вместо обычного строения 4–2 трубочки расположены по формуле +0, а у зеленой водоросли голенкинии в стержне жгутика сперматозоида имеется только одна центральная микротрубочка +1.

Особенно вариабильной сказалась переходная зона, которая у зеленых водорослей характеризуется так называемым звездчатым телом. У золотистых водорослей между периферическими дублетами и центральными трубочками в этой зоне имеется спиральное тело, а у динофитовых переходная зона благодаря диафрагмам разделена на камеры.

Число жгутиков может варьировать от одного до многих, хотя преобладают двужгутиковые формы; прикрепление их к клетке – к концу или сбоку.

Если у двужгутиковых клеток оба жгутика одинаковой длины, то они изоконтные, если разной длины, – то гетерокоптные. Одинакового строения жгутики называют изоморфными, различающиеся по форме – гетероморфными, В последнем случае один из жгутиков может быть гладким, а другой несет прикрепленные к его мембране волосовидные образования – мастигонемы. Мастигонемы имеют сложное и разнообразное строение и расположение. Поверхность жгутиков бывает покрыта различной формы чешуйками или шипами.

Регенерация жгутиков. Перед клеточным делением у одних монадных форм старые жгутики сбрасываются; при этом связь с базальным телом прерывается у проксимального конца переходной зоны в месте превращения триплетов в дублеты. В других случаях половина старого кинетического аппарата может, переходить к дочерним клеткам, а отсутствующие половинки образуются заново. Жгутики не способны делиться и всегда берут начало от базальных тел, репликация которых предшествует клеточному делению: от дистального конца базального тела вырастает стержень жгута, приподнимающий плазмалемму, которая по мере вытягивания жгутика также вытягивается и превращается в его мембрану. При репликации базальных тел формирование нового базального тела индуцируется уже имеющимся, по соседству с которым образуются девять новых триплетов микротрубочек. Базальные тела гомологичны, а в некоторых случаях идентичны с центриолями – центрами, от которых во время митоза у многих водорослей расходятся нити веретена. Центриоли располагаются парами, образуя дюносому с осями, ориентированными под прямым углом друг к другу, в особом участке гомогенной основной цитоплазмы – центросфере, где нет ни рибосом, ни эндоплазматической сети, ни каких-либо иных клеточных органелл. Центриоли, как и базальные тела, образованы девятью триплетами микрогрубочек, расположенными по кругу. При возникновении из единичной центриоли диплосомы в гомогенной центросфере перпендикулярно к оси имеющейся центриоли появляются девять очень коротких триплетов микротрубочек, которые растут, пока не достигнут длины трубочек материнской центриоли. Никаких контактов между двумя системами микротрубочек обнаружить нельзя – между ними всегда сохраняется расстояние. По-видимому, как и в случае репликации базального тела, каждая существующая центриоль является центром дифференцировки микротрубочек. Во время митоза центриоли расходятся в противоположные стороны, образуя полюса ядра, к которым сходятся нити веретена. Центриоли могут располагаться вне ядра или же при образовании в оболочке ядра полярных отверстий они вместе с микротрубочками проникают внутрь ядра. Центриоли встречаются не только у монадных форм и водорослей, жизненный цикл которых включает репродуктивные подвижные клетки, они были' обнаружены и у водорослей, лишенных подвижных стадий. В одних случаях центриоли мигрируют от ядра к поверхности клетки и начинают функционировать в качестве базальных тел, например у хорды, У хары в вегетативных клетках центриоли отсутствуют, однако имеются в клетках сперматогенных нитей, где они связаны с веретеном, а позднее принимают участие в образовании жгутиков. Во многих других случаях базальные тела функционируют во время митоза в качестве цептриолей.

Псевдоцилии. У зеленых водорослей с пальмеллоидной структурой клетки многих представителей несут неподвижные отростки – псевдоцилии. Электронно-микроскопическое исследование показало, что эти структуры – производные жгутиков, базальные тельца и корневые системы которых почти идентичны таковым хламидомонады; переходная зона также имеет звездчатый узор, характерный для жгутиков зеленых водорослей. Однако свободная часть органеллы не имеет центральных микротрубочек, и «В» трубочки периферических дублетов большей частью очень коротки. Таким образом, под мембраной псевдоцилий микротрубочки имеют расположение 9 –0 вместо характерного для типичных жгутиков +2.

Гаптонема. Ряд золотистых водорослей, помимо двух жгутиков, обладает особой органеллой – гаптонемой. Это расположенный между двумя жгутиками обычно более короткий отросток; он может находиться в скрученном или выпрямленном состоянии. У одного из видов хризохромулины с помощью цейтраферной киносъемки удалось определить скорость скручивания гапотнемы и ее вытягивания. Существует мнение, что гаптонема может служить для временного прикрепления клетки к субстрату. С другой стороны, у видов с очень длинной гаптонемой она может служить приспособлением, облегчающим парение в толще воды, как и всякий вырост клетки. На эту мысль наводят наблюдения за поведением гаптонемы: если клетка движется с помощью жгутиков, гаптонема свернута, если же жгутики перестают работать, гаптонема оказывается далеко вытянутой.

Как и в жгутиках, внутри гаптонемы проходят микротрубочки, расположение которых иное. Гаптонема, как правило, содержит лишь один круг из 5–8 простых микротрубочек. Центральные микротрубочки полностью отсутствуют. У вхождения гаптонемы в клетку добавляются еще 2–3 микротрубочки, так что число их достигает 9. Кроме того, в отличие от жгутиков кольцо трубочек гаптонемы окружено тремя концентрическими обвертками, из которых самая наружная служит продолжением плазмалеммы клетки. Очевидно, микротрубочки это те структурные элементы, которые обусловливают движение как жгутиков, так и гаптонемы; корней у гаптонемы нет.

Хлоропласты

В клетках эукариотических водорослей из органелл особенно заметны хроматофоры (хдоропласты)– носители окраски, которые в отличие от хлоропластов высших растений чрезвычайно разнообразны по форме. Хроматофоры, занимающие в клетке в большинстве случаев постенное положение, могут быть чашевидными, в виде кольца, опоясывающего клетку, в виде полого цилиндра, продырявленного многочисленными отверстиями, одной или многих идущих по спирали лент, одной-двух крупных париетальных пластинок, У многих водорослей хлоропласты многочисленны и имеют вид зерен или дисков, сосредоточенных в постенной цитоплазме. Реже хроматофор занимает в клетке центральное положение, тогда чаще всего он состоит из массивной центральной части, от которой к периферии клетки отходят лопасти или гребни.

Среди зеленых водорослей, обладающих сифоновой организацией, различают две большие группы. Водоросли, относящиеся к первой группе, обладают только одним типом пластид – хлоропластами. Это гомопластидные формы. Вторая группа гетеропластидная. У них, помимо хлоропластов, имеются амилопласты. Гомопластидия, гетеропластидия, так же как морфология и положение в клетке пластид, – важные таксономические признаки.

Субмикроскопическое строение хлоропластов водорослей в основных чертах сходно. У эукариотических водорослей хлоропласты ограничены оболочкой, под которой находится тонкозернистый материал матрикса, заключающий уплощенные, одетые мембраной мешочки, или пузыри, – тилакоиды, или диски, содержащие хлорофилл и каротиноиды.

Кроме того, в матриксе хлоропласта находятся рассеянные хлоропластные рибосомы, фибриллы ДНК, липидные гранулы и особые включения – пиреноиды. Однако в деталях тонкого строения, касающихся оболочки, расположения тилакоидов и фибрилл ДНК, места образования и отложения зерен запасных полисахаридов и формы пиреноидов, хлоропласты водорослей обнаруживают весьма постоянные различия, что и позволяет использовать их наряду с набором пигментов, продуктами запаса и строением жгутикового аппарата в качестве таксономических признаков, характеризующих большие группы – отделы водорослей.

Оболочка хлоропласта – перманентная структура, всегда присутствующая даже в тех случаях, когда тилакоидная система не дифференцируется. Например, у хлоропластных мутантов хламидомонаса, не способных образовывать хлорофиллы в темноте, тилакоидная система не наблюдается, а оболочка хлоропласта всегда присутствует. Бесцветная водоросль политома содержит пластиду без ламелл, но с оболочкой.

У зеленых и красных водорослей оболочка хлоропласта образована только двумя параллельными мембранами, у динофитовых и эвгленофитовых водорослей – тремя, а у золотистых, желтозеленых, диатомовых, криптофитовых, рафидофитовых и бурых водорослей, вокруг одетых четырехмембранной оболочкой хлоропластов, имеется сложная система мембран, находящаяся в прямой связи с мембраной ядра, – хлоропластная эндоплазматическая сеть. Расположение тилакоидов в матриксе хлоропласта также неодинаково в разных отделах водорослей, при этом хлоропласты водорослей со сходными пигментами характеризуются и сходным расположением тилакоидов.

Наиболее простое расположение наблюдается у красных водорослей, у которых тилакоиды лежат в матриксе поодиночке. У остальных эукариотических водорослей тилакоиды группируются, образуя ламеллы, причем число тилакоидов, входящих в состав одной ламеллы, постоянно в пределах больших групп, объединяющих родственные водоросли. Есть водоросли, у которых тилакоиды соединяются по два.У золотистых, желто-зеленых, диатомовых, бурых, динофитовых и эвгленофитовых водорослей тилакоиды располагаются преимущественно по три. Обычно между соседними тилакоидами внутри ламеллы имеются промежутки. У зеленых водорослей наиболее вариабельное расположение тилакоид

К-во Просмотров: 153
Бесплатно скачать Курсовая работа: Цитология эукариотических водорослей