Курсовая работа: Цвет и графика на ЭВМ
яркость цвета (Brightness).
Тон - это конкретный оттенок цвета. Насыщенность характеризует его интенсивность или чистоту. Яркость же зависит от примеси черной краски, добавленной к данному цвету.
Значение цвета выбирается как вектор, выходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по границе окружности - чистым цветам. Направление вектора определяет цветовой оттенок и задается в угловых градусах. Длина вектора определяет насыщенность цвета. Яркость цвета задают на отдельной оси.
Цветовая модель HSV
Цветовая модель HSV (от англ. Нue, Saturation, Value - тон, насыщенность, величина) является, в отличие от рассмотренных выше моделей, ориентированной на человека и его интуитивные представления о выборе цвета.
Рассмотрим цилиндрические координаты в трехмерном евклидовом пространстве, H - угол в горизонтальной плоскости от оси Ox, S - радиус в горизонтальной плоскости (расстояние до оси Oz), V - высота (по оси Oz). Все цветовое пространство представляет из себя перевернутую шестигранную пирамиду.
Концептуально, можно представить художника, который смешивает цвета. Вершины основания пирамиды соответствуют чистым основным цветам (красному, желтому, зеленому, цвету морской волны, синему и фиолетовому). При их смешивании друг с другом в разных пропорциях (в пространстве это будут линейные комбинации соответствующих векторов) точка, соответствующая цвету, перемещается по основанию пирамиды. Смешивая противоположные цвета (например, желтый и синий), можно получить белый. Добавляя к какому-либо чистому цвету черный, мы будем спускаться по пирамиде, получая различные оттенки, при этом диапазон S будет уменьшаться вплоть до нуля. На оси S = 0 (оттенки серого) значение H не определено.
Цветовая модель HLS
Цветовая модель HLS (от англ. Нue, Lightness, Saturation - тон, светлота, насыщенность) схожа с моделью HSV. Снова рассмотрим цилиндрические координаты в трехмерном евклидовом пространстве, H - угол в горизонтальной плоскость от оси Ox, S - радиус в горизонтальной плоскости (расстояние до оси Oz), L - высота (по оси Oz). Все цветовое пространство представляет из себя две соединенные основаниями шестигранные пирамиды.
Как видно эта модель получена из HSV вытягиванием вдоль вертикальной оси. Понятия H и S остались теми же, только по вертикальной оси теперь L вместо V. Концептуальное различие состоит в том, что в этой модели считается, что движение от чистых цветов (у которых L = 0,5, S = 1) как в направлении белого, так и черного (а не только черного, как в HSV) одинаково приводит к уменьшению информации в H (вплоть до того, что в вершинах H не определено (как впрочем, и на всей вертикальной оси S = 0)) и сужению диапазона S.
Цветовые модели Y**
Существует несколько тесно связанных цветовых моделей, которые объединяет то, что в них используется явное разделение информации о яркости и цвете. Компонента Y соответствует одноименной компоненте в модели CIE XYZ и отвечает за яркость. Такие модели находят широкое применение в телевизионных стандартах, так как исторически необходима была совместимость с черно-белыми телевизорами, которые принимали только сигнал, соответствующий Y. Также они применяются в некоторых алгоритмах обработки и сжатия изображений и видео.
Цветовые модели YUV, YPbPr и YCbCr
Расcмотрим цветовую модель YUV. U и V отвечают за цветовую информацию и определяются через преобразование из RGB:
Y = 0,299R + 0,587G + 0,114B;U = 0,492(B - Y) = -0,147R - 0,289G + 0,436B;V = 0,877(R - Y) = 0,615R - 0,515G + 0,100B;Модель YUV применяется в телевизионной системе PAL.
Цветовые модели YCbCr и YPbPr являются вариациями YUV с другими весами для U и V (им соответствуют Cb/Pb и Cr/Pr). YPbPr применяется для описания аналоговых сигналов (преимущественно в телевидении), а YCbCr - для цифровых. Для их определения используются два коэффициента: Kb и Kr. Тогда преобразование из RGB в YPbPr описывается так:
Переход от RGB к YPbPr
Выбор Kb и Kr зависит от того, какая RGB-модель используется (это в свою очередь зависит от воспроизводящего оборудования). Обычно берется, как и выше, Kb = 0, 114; Kr = 0, 299. В последнее время также используют Kb = 0, 0722; Kr = 0, 2126, что лучше отражает характеристики современных устройств отображения.
Из приведенных выше формул следует что при имеем следующие диапазоны ; . Для цифрового представления эти формулы видоизменяют для получения только положительных дискретных коэффициентов в диапазонах
Переход от RGB к YCbCr
В телевидении обычно берут minY = 16, maxY = 235, minC = 16, maxC = 240. В стандарте сжатия изображений JPEG используется полный 8-битный диапазон: minY = 0, maxY = 255, minC = 0, maxC = 255.
Цветовая модель YIQ
Цветовая модель YIQ применялась в телевизионной системе NTSC (I - от англ. in-phase, Q - от англ. quadrature; происходят от особенностей систем декодирования). Она тесно связана с моделью YUV, так как переход от YUV к YIQ является поворотом в плоскости UV = IQ на .
Y = 0,299R + 0,587G + 0,114BI = 0,735(R - Y) - 0,268(B - Y) = 0,596R - 0,274G + 0,321BQ = 0,478(R - Y) + 0,413(B - Y) = 0,211R - 0, 523G + 0,311B