Курсовая работа: Участь мікроорганізмів в кругообігу азоту

Численні дослідження показали, що бульбочкові бактерії відрізняються між собою, а тому рід Rhizobium треба розглядати як групу споріднених мікроорганізмів. У молодому віці ці бактерії рухливі, мають паличковидну форму, завдовжки від 1,2 до 3 мкм, розміщення джгутиків в одних видів перетрихальне, в інших — субполярне. Бульбочкові бактерії є грамнегативними, неспороносними аеробними організмами.

Старіючи, бульбочкові бактерії втрачають джгутики, перестають бути рухливими і набувають вигляду оперезаних паличок, оскільки з віком бактеріальна клітина наповнюється жировими включеннями, які не забарвлюються. Зі старінням у бульбочках культури Rhizobium часто виникають потовщені, розгалужені, сферичні та іншої форми утворення, які значно більші за звичайні клітини. Ці поліморфні утворення дістали назву бактероїдів (рис. 1). Вони нерухомі і не здатні до розмноження. Проте найбільш енергійно відбувається засвоєння азоту в бульбочках саме тоді, коли бульбочкові бактерії перетворюються на бактероїди.

Бульбочкові бактерії можуть асимілювати різні вуглеводи, органічні кислоти і багатоатомні спирти. Як джерело азоту їм доступні амінокислоти. Для більшості культур Rhizobiumоптимальне значення рН середовища дорівнює 6,5-7,5, а оптимальна температура становить 24—26 °С.

Встановлено, що бульбочкові бактерії можуть заражати лише певну групу бобових рослин. Вибіркова здатність цих бактерій відносно рослин дістала назву специфічності. Ця властивість стала головною ознакою для розробки систематики бульбочкових бактерій.

За Л.М.Доросинським, рід Rhizobiumподіляють на такі групи: R. leguminosarum— бактерії гороху, вики, кормових бобів, чини; R. phaseoli— квасолі; R. japonicum— сої; R. vigna— вігни, арахісу, машу; R. сісеr — нугу; R. lupini— люпину, серадели; R. trifolii— еспарцету; R. lotus— лядвенцю; R. robinii— акації.

В окремих випадках спостерігається не тільки видова, а й сортова специфічність бульбочкових бактерій. Крім специфічності, цим бактеріям властива вірулентність — здатність проникати в тканину кореня, розмножуватися там і спричиняти утворення бульбочок. За певних умов ці бактерії можуть знижувати або зовсім втрачати активність.

Істотною властивістю бульбочкових бактерій є також їхня активність, тобто здатність у симбіозі з рослинами асимілювати молекулярний азот. У ґрунті трапляються штами активних і неактивних бульбочкових бактерій. Зараження бобових рослин активною расою бактерій веде до утворення великої кількості бульбочок на головному корені та зумовлює енергійний процес фіксації атмосферного азоту. Неактивні раси цих бактерій спричинюють утворення бульбочок, але азот не фіксується.

Рис. 1. Бульбочкові бактерії з роду Rhizobium:

А — клітини, виділені з бульбочок конюшини; X15 000-25 000 (за Зільгером); Б — бактероїди з бульбочок конюшини


Бульбочки, які утворюються активними расами бактерій, мають рожеве забарвлення. Пігмент, що надає їм такого забарвлення, за хімічним складом близький до гемоглобіну крові та називається леггемоглобіном (фітоглобін). Вважають, що цей пігмент сприяє процесу засвоєння азоту, підтримуючи окислювально-відновний потенціал на певному рівні. Бульбочки, які утворюють неактивні раси бактерій, мають зеленкуватий колір.

Механізм проникнення бактерій у кореневий волосок досі ще недостатньо вивчено. Встановлено, що на поверхні клітинної оболонки бобових рослин є особливий вид білка, до якого вибірково "приклеюються" специфічні бульбочкові бактерії завдяки наявності в їхній, оболонці специфічного ліпополісахариду. Припускають, що саме у відповідь на появу цього ліпополісахариду на оболонці кореневого волоска з'являється білок лектин, який зв'язує полісахариди оболонки ризобіїв. Це своєрідний механізм "впізнавання" перед виникненням бобово-ризобіального симбіозу.

Після проникнення бактерій у клітину кореневого волоска вони починають посилено розмножуватись і утворюють суцільний тяж, так звану інфекційну нитку (слизовий тяж), в якій скупчується величезна кількість бульбочкових бактерій. Останні можуть розмножуватися тільки в тетраплоїдних клітинах рослин.

Як в інфікованих бактеріями, так і в сусідніх клітинах починається активний поділ, і утворюються бульбочки. В однорічних рослин бульбочки є тимчасовим утворенням. У багаторічних вони можуть функціонувати протягом кількох років. Контакт бактерії з рослиною встановлюється через судинні пучки, які обплітають тканину бульбочки. Провідними шляхами до бульбочок надходять вуглеводи та інші поживні речовини, де вони використовуються бактеріями, а рослина одержує із бульбочок зв'язані сполуки азоту. Доведено, що найінтенсивніша віддача зв'язаного азоту із тканин бульбочки відбувається тоді, коли бактероїди перебувають у життєдіяльному стані.

Транспорт азотовмісних речовин із бульбочок у рослину здійснюється у формі амінокислот. Незначна кількість засвоєного рослиною азоту виділяється внаслідок екзоосмосу коренями в ґрунті переважно у вигляді аспарагінової кислоти.

Після відмирання і розкладу бульбочок бактерії потрапляють у ґрунт і живуть там як сапрофіти, поки знову не проникнуть у корені рослин. Питання про те, що лежить в основі взаємовідносин бактерій і бобових рослин (паразитизм чи співжиття), ще повністю не з'ясовано. Важливим є той факт, що бульбочкові бактерії, проникаючи в рослину, стимулюють розвиток у неї імунітету, який перешкоджає подальшому зараженню коренів.

Окремі бобові культури збагачують ґрунти різною кількістю азоту. При сприятливих умовах симбіозу кількість азоту, який фіксується горохом, за рік сягає 100—300 кг/га, кормовими бобами — 160-200, люпином білим — до 300, люцерною — до 500 кг/га і більше. Бобові рослини нагромаджують до 60 % азоту внаслідок фіксації молекулярного азоту. Решту азоту вони використовують із ґрунту у вигляді мінеральних сполук. Отже, вклад бобових рослин у забезпечення ґрунтів доступними формами азоту досить відчутний.

Рис. 2. Бульбочки на листках Pavetta.

Праворуч — препарат бактерій з бульбочок (за Є.М.Мішустіним, 1968)

Утворення, які нагадують бульбочки, знайдено у багатьох рослин, що не належать до родини бобових. Серед покритонасінних бульбочки виявлено на коренях представників порядків Cycadales, Ginkgoales і Coniferales. У дводольних бульбочки найчастіше бувають у представників родин Согіагіасеае, Betulaceae, Casuarinaceae тощо. В окремих випадках їх знаходили на коренях рослин із родин Brassicaceae, Rosaceae, Scrophulariaceae тощо, з однодольних рослин бульбочки описано лише у представників родини Роасеае.

Нещодавно з'явилися цікаві дані про те, що бактерії роду Azospirillum, які асоціюються з коренями злаків, мають здатність інтенсивно фіксувати азот. Вони поширені в тропічних і помірних кліматичних зонах. Природу збудників, які зумовлюють утворення бульбочок у цих рослин, повністю ще не вивчено. Так, у бульбочках вільхи знайдено актиноміцети.

Досліди з використанням міченого азоту показали, що у більшості рослин із родів вільхи (AlnusL.), обліпихи (HippophaeL.), лоху (ElaeagnusL.) мічений азот зв'язується тільки тоді, коли є бульбочки. Ці дані свідчать про те, що зв'язування молекулярного азоту небобовими рослинами також відбувається в симбіозі з мікроорганізмами.

Бульбочки можуть утворюватися не тільки на коренях рослин, а й на інших органах. їх знайдено на листках майже 400 різних видів рослин, наприклад деяких дводольних тропічних, зокрема у павети (PavettaindicaL.) із родини маренових (Rubiaceae). Найдокладніше досліджено такі бульбочки у рослин павети і психотрії (рис. 4).

1.2 Вільноживучі азот фіксатори

Крім бульбочкових бактерій, у ґрунті є багато інших видів мікроорганізмів, які можуть засвоювати молекулярний азот атмосфери. В 1893 р. С. М. Виноградський вперше виділив і вивчив вільноживучий азотфіксатор — анаеробну спороносну бактерію веретеноподібної форми, яку було названо на честь Л. Пастера — Clostridiumpasteurianum.

Описано багато азотфіксаторів з роду Clostridium (C.buturicum, C.acetobutylicum, C.pectinovorum, C.felsineum, Cl.beijerinckii та ін.). Ці бактерії можуть використовувати різні джерела азоту: солі амонію і азотної кислоти, а також багато різних органічних азотовмісних сполук. Із вуглецевих сполук вони використовують моноцукри, дицукри, поліцукри, органічні кислоти тощо.

Енергійним фіксатором азоту серед цієї групи бактерій є Clostridiumpasteurianum. Він може зв'язувати до 10—12 мг азоту на 1 г збродженого цукру.

Іншим дуже поширеним вільноживучим азотфіксатором є аеробна, овальної форми, бактерія — Azotobacterchroococcum, відкрита у 1901 p. M. Бейєрінком. Розмір клітин азотобактера коливається в межах 2—3 х 4—6 мкм. Він розмножується простим поділом з утворенням поперечної перегородки. Молоді клітини азотобактера рухливі, перетрихи з віком втрачають рухливість, набувають майже коковидної форми і покриваються товстим шаром слизу (капсулою). Іноді клітини азотобактера можуть бути вкритими товстою оболонкою і перетворюватися на цисти.

Серед представників азотобактера найґрунтовніше вивчено A.chroococcum, A.vinelandii, A.agilis, A.beijerinckii(рис. 3). Ці види різняться за формою і розмірами клітин, пігментацією колоній.

К-во Просмотров: 240
Бесплатно скачать Курсовая работа: Участь мікроорганізмів в кругообігу азоту