Курсовая работа: Устойчивость систем дифференциальных уравнений

Решением этой системы будет функция . В зависимости от формы матрицы J получаются два случая: или вырожденный узел (рис. 1г), либо звездный (дикритический) узел. Дикритический узел возможен лишь в случае системы

Рис. 1. Поведение траекторий в зависимости от значений собственных чисел

1.5. Линейные однородные системы с периодическими коэффициентами.

В данном пункте излагается так называемая теория Флоке.

Будем рассматривать систему вида (4)

где , а матричная функция P(t) удовлетворяет условию P(t + ) = P(t), >0 при всех . Такие матричные функции будем называть периодическими с периодом  или -периодическими.

Теорема Флоке. Фундаментальная матрица системы (4) имеет вид

где G — -периодическая матрица, R — постоянная матрица.

Матрица В, определяемая равенством , называется матрицей монодромии. Для нее справедливо . Она определяется с помощью фундаментальной матрицы неоднозначно, но можно показать, что все матрицы монодромии подобны. Часто матрицей монодромии называют ту, которая порождается нормированной при фундаментальной матрицей , то есть .

Собственные числа матрицы монодромии называются мультипликаторами уравнения (4), а собственные числа матрицы R — характеристическими показателями. Из определения R имеем , при этом простым мультипликаторам соответствуют простые характеристические показатели, а кратным — характеристические показатели с элементарными делителями той же кратности.

Характеристические показатели определены с точностью до . Из и формулы Лиувилля следует, что .

Название мультипликатор объясняется следующей теоремой:

Теорема. Число  является мультипликатором уравнения (4) тогда и только тогда, когда существует ненулевое решение этого уравнения такое, что при всех t .

Следствие 1. Линейная периодическая система (4) имеет нетривиальное решение периода  тогда и только тогда, когда по меньшей мере один из ее мультипликаторов равен единице.

Следствие 2. Мультипликатору соответствует так называемое антипериодическое решение периода , т. е. . Отсюда имеем:

Таким образом, есть периодическое решение с периодом . Аналогично, если (p и q — целые, ), то периодическая система имеет периодическое решение с периодом .

Пусть , где — матрица из теоремы Флоке, — ее жорданова форма. По теореме Флоке , или , (5)

где — фундаментальная матрица, — -периодическая матрица. В структуре фундаментальной матрицы линейной системы с периодическими коэффициентами характеристические показатели играют ту же роль, что и собственные числа матрицы коэффициентов в структуре фундаментальной матрицы линейной системы с постоянными коэффициентами.

Пример. Рассмотрим дифференциальное уравнение второго порядка

, (6)

где — -периодическая вещественная скалярная функция. Мультипликаторами уравнения (6) будем называть мультипликаторы соответствующей линейной системы, т. е. системы

с матрицей . Так как , то . Мультипликаторы являются собственными числами матрицы

,

где — решение уравнения (6), удовлетворяющее начальным условиям , а — решение уравнения (6), удовлетворяющее начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где .

2. Устойчивость решений систем дифференциальных уравнений.

2.1. Устойчивость по Ляпунову.

Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует траекторию с точки зрения поведения соседних траекторий, располагающихся в ее окрестности. Предположим, что система при старте из начальной точки порождает траекторию . Рассмотрим другую траекторию той же системы , стартовая точка которой близка к . Если обе траектории остаются близкими в любой последующий момент времени, то траектория называется устойчивой по Ляпунову.

К-во Просмотров: 875
Бесплатно скачать Курсовая работа: Устойчивость систем дифференциальных уравнений