Курсовая работа: Устройство усилителя мощности звуковой частоты
Рис.4. Усилитель мощности звуковой частоты
Вывод: Рассматриваемый в данной работе усилитель звуковой частоты надежней и мощней, чем существующие аналоги, он обладает большей выходной мощностью, меньшим коэффициентом гармоник и т. д. Схемы со схожими характеристиками имеют большие размеры, что усложняет их расчет и сборку.
3. Анализ структурной схемы
Рис. 5. Структурная схема УМЗЧ
1 – блок ограничения (БО), 2 – предварительный каскад (ПК), 3 – блок стабилизации (БС), 4 – обратная связь (ОС), 5 – выходной каскад (ВК).
БО уменьшает коэффициент усиления ОУ, чтобы стабилизировать его характеристики, когда выходное напряжение усилителя мощности достигает максимального значения. В результате уменьшается глубина насыщения транзисторов VT1, VT2 и снижается вероятность возникновения сквозного тока в выходном каскаде [5].
ПК осуществляет необходимое усиление по напряжению и обеспечивает работу усилителя с глубокой отрицательной ОС. Источник входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, так как при слабом управляющем напряжении невозможно получить значительные изменения выходного тока.
БС стабилизируют напряжение питания ОУ, которое одновременно используется для создания необходимого напряжения смещения выходного каскада.
ОС стабилизирует характеристики УМ и задает общий коэффициент усиления по напряжению.
ВК обеспечивает необходимое усиление по току и по напряжению.
4. Анализ схемы электрической принципиальной
Каскад предварительного усиления выполнен на быстродействующем ОУ DA1 (К544УД2Б), который наряду с необходимым усилением по напряжению обеспечивает работу усилителя с глубокой ООС (рис. 6). Резистор обратной связи R5 и R1 определяют коэффициент усиления усилителя. Выходной каскад выполнен на транзисторах VT1…VT8. Он обеспечивает усиление, как по току, так и по напряжению. В основном каскаде (VT3, VT4) предусматривается использование мощных составных транзисторов КТ825, КТ827. Вспомогательный каскад VT5…VT8 также должен быть собран на составных транзисторах. Резисторы R8…R22, диоды VD7, VD8 и транзисторы VT1, VT2 определяют режим работы выходных каскадов, который не меняется при изменении напряжения питания в значительных пределах.
Рис. 6. Электрическая принципиальная схема усилителя мощности звуковой частоты
Конденсаторы С6…С9 корректируют фазовую и частотную характеристики каскада. Стабилитроны VD1, VD2 стабилизируют напряжение питания ОУ, которое одновременно используется для создания необходимого напряжения смещения выходного каскада.
Делитель выходного напряжения ОУ R6, R7, диоды VD3…VD6 и резистор R4 образуют цепь нелинейной ООС, которая уменьшает коэффициент усиления ОУ, когда выходное напряжение усилителя мощности достигнет своего максимального значения. В результате уменьшается глубина насыщения транзисторов VT1, VT2 и снижается вероятность возникновения сквозного тока в выходном каскаде. Конденсаторы С4, С5 – корректирующие. С увеличением емкости конденсатора С4 растет устойчивость усилителя, но одновременно увеличиваются нелинейные искажения, особенно на высших частотах.
Усилитель сохраняет работоспособность при снижении напряжения питания до ±25 В. Возможно и дальнейшее снижение напряжения питания вплоть до ±15 В и даже до ±12 В при уменьшении сопротивления резисторов R2, R3 или непосредственном подключении выводов питания ОУ к общему источнику питания и исключении стабилитронов VD1, VD2 [5].
5. Выбор элементной базы
5.1 Конденсаторы
Применяемые в радиоаппаратуре конденсаторы можно разделить на конденсаторы постоянной, переменой емкости и подстроечные.
У конденсаторов постоянной емкости в конструкции возможность изменения величины емкости не предусмотрена. Эти конденсаторы применяют в качестве элементов колебательных контуров, настроенных на фиксированную частоту, в качестве элементов связи, для компенсации изменяющихся параметров элементов контура при воздействии повышенной или пониженной температуры, для сопряжения контуров в супергетеродинных приемниках, в качестве разделительных, блокировочных и для многих других целей. Такое разнообразие функций привело к созданию большого количества типов конденсаторов постоянной емкости. В зависимости от материала диэлектрика конденсаторы можно разделить на следующие группы: керамические (рис. 7), слюдяные, бумажные, пленочные и электролитические (рис. 8) [1].
Рис. 7. Конденсатор МП31-5
Рис. 8. Конденсатор К50-12.
5.2 Микросхема
Наибольшее распространение получили ИС, у которых все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника. Их называют полупроводниковыми.
Для изготовления полупроводниковых микросхем используют кремниевые монокристаллические пластины диаметром не менее 30 — 60 мм и толщиной 0,25 — 0,4 мм. Элементы микросхемы — биполярные и полевые транзисторы, диоды, резисторы и конденсаторы — формируют в полупроводниковой пластине методами, известными из технологии дискретных полупроводниковых приборов (селективная диффузия, эпитаксия и др.). Межсоединения выполняют напылением узких проводящих дорожек алюминия на окисленную (т. е. электрически изолированную) поверхность кремния, имеющую окна в пленке окисла в тех местах, где должен осуществляться контакт дорожек с кремнием (в области эмиттера, базы, коллектора транзистора и т. д.). Для соединения элементов микросхемы с ее выводами на проводящих дорожках создаются расширенные участки —контактные площадки. Методом напыления иногда изготавливают также резисторы и конденсаторы (рис. 9).
Рис. 9. Интегральная микросхема К544УД2Б
5.3 Резисторы
применяемые в радиоаппаратостроении резисторы подразделяют на постоянные (рис. 10) и переменные. Переменными называют резисторы, сопротивление которых можно плавно изменять в процессе эксплуатации или регулировки аппарата. Их применяют в тех случаях. когда это необходимо для изменения параметров изделия, или же для компенсации в процессе регулировки погрешностей параметров других элементов схемы. Во всех остальных случаях используют постоянные резисторы.
усилитель мощность транзисторный нагрузка