Курсовая работа: Вимірювання роботи виходу електронів методом Кельвіна
Температуру рожарення катода можна встановити за допомогою залежності температури розжарення Т від величини χ=Р/ld. Тут Р - потужність струму нитки розжарення; l - довжина нитки; d - діаметр нитки.
Р=Iр Uр (2.4)
де Iр - струм розжарення; Uр - напруга розжарення.
Величини Ia Iр Uр вимірюються по приладах, як показано на рис. 2.
Рис.2. Установка для вимірювання роботи виходу електронів по величині густини струму термоеміссії
2.2 Вимірювання роботи виходу електронів за допомогою явища фотоефекту
Фотоефектом називається звільнення (повне або часткове) електрона від зв'язків з атомами і молекулами речовини під дією світла (звичайного, інфрачервоного, ультрафіолетового). Якщо електрони виходять за межі освітлюваної речовини (повне звільнення), то фотоефект називається зовнішнім (відкритий в 1887 році Герцем і детально досліджений в 1888 році А.Г. Столетовим). Якщо ж електрони не тільки втрачають зв'язок зі «своїми атомами» і молекулами, але і залишаються всередині освітлюваної речовини як «вільні електрони» (часткове звільнення), збільшуючи тим самим електропровідність речовини, то фотоефект називається внутрішнім (відкритий в 1873 році У.Смитом). Зовнішній фотоефект спостерігається у металів. На Рис. 3 приведена схема, за допомогою якої можна спостерігати зовнішній фотоефект.
Рис.3. Установка для вимірювання роботи виходу електронів за допомогою явища фотоефекту.
Із третього закону фотоефекту (для кожної речовини існують порогові значення частоти та довжини хвилі світла, які відповідають межі існування фотоефекту; світло з меншою частотою та більшою довжиною хвилі фотоефекту не викликає) випливае поняття «червона межа фотоефекту» (оскільки це порогове значення завжди ближче до червого світла, то йому дали назву червона межа фотоефекту).
Зрозуміло, що червона межа фотоефекту існує завдяки притягуванню електронів до ядер. Разом з тим, останній закон не можна пояснити на основі уявлення про світло як неперервні плавні коливання у вакуумі-ефірі: такі хвилі мали довго розгойдувати електрони до того моменту, коли швидкість останніх стала б достатньою для відриву від металу.
Повне пояснення фотоефекту належить А.Ейншейну, який використав ідею німецького фізика М.Планка про те, що світло випромінюється і поширюється окремими порціями - квантами (або інша назва фотони). Для обчислення енергії кванта світла М.Планк запропонував просту формулу
ε= hν. (2.5)
А. Ейнштейн висловив припущення, що фотоефект відбувається внаслідок поглинання фотоном одного кванта, а інші кванти не можуть брати участь у цьому процесі. Тоді енергія одного кванта світла (фотона) витрачається на подолання бар'єру (виконання роботи виходу, відриву від матеріалу) і надання кінетичної енернії фотоелектрону.
Це дозволило йому записати закон збереження енергії для процесу - рівняння Ейнштейна для фотоефекту
(2.6)
де ν — частота світла, h — стала Планка, m — маса електрона, v — його швидкість, A — робота виходу.
Тобто за червоною межою фотоефекту можна визначити роботу виходу.
2.3 Вимірювання роботи виходу електронів через контактну різницю потенціалів
Якщо два провідники А і В з істинними значеннями роботи виходу φа і φв при однакових температурах знаходяться в електричному контакті, то електрони тектимуть в одному напрямі, поки не буде досягнутий рівноважний стан, при якому рівні Фермі двох провідників стануть однаковими. Іншими словами, електрохімічні потенціали електронів в двох провідниках повинні стати рівними. Тоді потенціали у точках X і У поблизу поверхонь провідників А і В буде рівний:
, (2.7)
(2.8)
де - електрохімічний потенціал. Очевидно, що
(2.9)
Величина називається контактною різницею потенціалів (надалі КРП) між провідниками А і В і може бути позитивною, негативної або нулем. Якщо провідники знаходяться при різних температурах, то до правої частини рівняння (2.9) необхідно додати термоелектричну складову.
Припустимо тепер, що провідники А і В не знаходяться в безпосередньому контакті один з одним, а якимсь чином зв'язані між собою електрично і що потенціал введений в зовнішній ланцюг.
(2.10)
Тоді Рівняння (2.10) є основою для різних методів вимірювання КРП, які можна розділити на дві групи. В першій групі методів провідники А і В знаходяться в безпосередньому контакті, а потенціал , що прикладається, підбирається так, щоб різниця потенціалів приймала задане значення , яке може бути обчислене на основі інших експериментальних параметрів. В цих умовах і для визначення достатньо одного експерименту. В цій групі найважливішими є метод Кельвіна і метод статичного конденсатора. Іншими методами є магнетронный метод Оутлі, метод насиченого діода і метод пробою. В другій групі методів провідник А спочатку порівнюється з третім провідником С, для чого до А і С прикладається такий потенціал V1 щоб вимірювана величина (звичайно сила струму) стала рівною