Курсовая работа: Влияние гипотермии на экспрессию генов

Введение

Количественные и качественные преобразования белков растений при снижении температуры предполагают индукцию или репрессию их синтеза. Необходимые доказательства правомерности такого заключения были получены при изучении отдельных стадий белкового синтеза. Первая из них - транскрипция.


1. Изменения в содержании нуклеиновых кислот при гипотермии

Имеющиеся данные свидетельствуют о том, что, по сравнению с нормальными условиями, содержание ДНК при гипотермии меняется незначительно. Исследование возможности синтеза нуклеиновых кислот в ядрах клеток скерды волокнистой и триллиума во время охлаждения до температур, близких к 0°С, показало, что в этих условиях идет активное включение меченых соединений. Включение метки становилось значительно интенсивнее при небольшом повышении температуры, либо при увеличении экспозиции. Цитофотометрический анализ содержания ДНК-фуксина в корневой меристеме семян озимых злаков показал, что охлаждение снижает репликативную и метаболитическую активности хроматина. Способность хроматина поддерживать синтез РНК даже в присутствии эндогенного источника РНК-полимеразы заметно подавляется при охлаждении бобов. Возможно, это связано с тем, что при снижении температуры уменьшается доступность матрицы ДНК для полимеразы.

В дальнеших исследованиях было подтверждено положение о том, что содержание ДНК при гипотермии изменяется мало, а все изменения в метаболизме нуклеиновых кислот касаются, в основном, РНК. Показано, что низкотемпературная акклиматизация сопровождается увеличением содержания РНК, расхождения в данных о метаболизме ДНК, по-видимому, зависят от того, вычисляется ли содержание ДНК на единицу сырого или сухого веса. В некоторых случаях отмечаются связанные с гипотермией изменения в содержании транспортных РНК, однако эти изменения наблюдались не всеми авторами. Кроме того, имеются данные об изменении активности тРНК и аминоацил-тРНК-синтетазы во время закаливания растения, что свидетельствует о регуляции в этих условиях синтеза белка на уровне трансляции.


2. Изменения экспрессии генов при гипотермии

Как известно, в клетках растений, насекомых, млекопитающих как тепловой, так и холодовой шок вызывает изменения в активности генов. При этом начинается синтез небольшого числа «белков теплового шока» и прекращается синтез всех остальных белков. Если продолжить аналогию между тепловым и холодовым шоками, то следует ожидать, что при понижении температуры в определенных границах начнут функционировать специфические гены. В этой связи становится понятной противоречивость данных об изменении содержания РНК при гипотермии. Значительная часть авторов указывает, что во время охлаждения и холодового закаливания у растени повышается общее содержание РНК, но имеются и противоположные результаты. Изучение специфических видов РНК после фракционирования показало относительное повышение содержания РНК, действующе на уровне трансляции. Низкотемпературное закаливание растения приводит к структурным изменениям в рибосомах.

Ч. Гай с соавторами привели прямое доказательство того, что гипотермия индуцирует изменения в экспрессии генов. Используя трансляцию в бесклеточно системе, они показали, что под действием низких положительных температур происходит быстрое и стабильное изменение набора поли+мРНК, выражающееся в появлении специфических РНК холодового стресса. Изменение набора поли+мРНК происходило уже в первые сутки закаливания, при этом начиналось развитие холодоусточивости,. С началом развития устойчивости коррелировало появление двух мРНК, которые в бесклеточно системе определяют синтез белков холодового шока с молекулярными массами 82 и 180 кДа. В последующие 8 суток продолжается изменение состава мРНК: содержание четырех мРНК увеличивается, а трех - значительно уменьшается. Большая часть белков, синтез которых индуцировался гипотермие, не идентична по молекулярным массам и pI белкам теплового шока. Таким образом, это сообщение является одним из первых свидетельств существования в растениях белков холодового шока, отличных от белков теплового шока.

Быстрое изменение набора мРНК с началом холодового закаливания было впоследствии подтверждено другими исследователями. Так, было показано, что двухдневная экспозиция проростков люцерны при 40 С приводит к резкому увеличению содержания общего количества РНК и к изменению состава транслируемых мРНК. Трансляция invitroполи+ мРНК, с последующим электрофорезом меченых полипептидов, показала индукцию синтеза низко- и высокомолекулярных белков холодового шока. При переносе растений в условия с «нормальной» температурой происходило обратное изменение спектра полипептидов и, следовательно, набора мРНК. Показано, что мРНК, индуцируемые охлаждением, накапливаются с различно скоростью. При трансляции invitroобнаружены группы белков с различной индукцией синтеза denovo-от 6 до 12 часов, а также белки, содержание которых при холодовом закаливании снижается.

В последующие годы изучение изменений в синтезе РНК при низкотемпературном стрессе привлекло особое внимание исследователе. К настоящему времени выделено и охарактеризовано значительное число мРНК, экспрессирующихся при низкотемпературном стрессе и в процессе адаптации растения к низким температурам. В частности, установлено, что, например, в люцерне во время холодовой акклиматизации накапливаются две мРНК, MsaCiA и MsaCiB, которые кодируют белки, содержащие богатые глицином мотивы. Слитые полипептиды, содержащие аминокислотные последовательности, выведенные на основании этих мРНК, продуцировались в E. coliи были использованы для получения антител. Полученные антитела обладали кросс-реактивно специфичностью с растворимыми полипептидами MsaCiA и MsaCiB, соответственно. Эти полипептиды обнаруживались только в верхушках закаленных растений, хотя во время холодовой акклиматизации мРНК для

MsaCiA накапливалась как в верхушках, так и в стеблях. Анализ белков при помощи вестерн-блоттинга показал, что MsaCiA-подобные белки с молекулярными массами 32, 41 и 68 кДа накапливались в клеточных стенках стебле, и один, с молекулярно массой 59 кДа, - в клеточных стенках побегов. Показано, что эта дифференциальная экспрессия включает как транскрипционную, так и посттрансляционную регуляцию. Сравнение, проведенное между шестью сортами люцерны с контрастно морозоустойчивостью, подтверждает то, что способность накапливать до значительного уровня белки, подобные MsaCiA и MsaCiB, может быть связана с устойчивостью растения к низким температурам.

В ходе исследований экспрессии генов при низких температурах было выявлено несколько групп генов, экспрессия которых индуцируется холодовым шоком и адаптацией растения к низким температурам. Далее будут рассмотрены основные семейства таких генов.

3. Семейство генов Wcs 120

Озимые, по сравнению с яровыми злаками, обладают эффективными механизмами акклиматизации, которые позволяют им перезимовывать и выживать при температуре замерзания почвы. Это различие генетически запрограммировано и включает в себя сложную генетическую систему. Чтобы понять характер данной системы и ее регуляцию низкими температурами, были идентифицированы и охарактеризованы гены пшеницы, устойчивой к замерзанию почвы. В ходе этих исследований установлено, что семейство гена wcs120 кодирует группу белков с молекулярными массами от 12 до 200 кД. Как показано при помощи биохимических, иммуногистохимических и молекулярно-генетических анализов, данное семейство генов, специфическое у Poaceae, весьма многочисленно и координированной регулируется низкими температурами. Более того, накопление белков WCS прямо коррелирует с уровнем устойчивости растений к замерзанию почвы. Эти анализы обнаружили также регуляторны контроль процесса яровизации при экспрессии генов низкой температуры у озимых злаков.

Индуцируемые низко температурой у пшеницы гены семейства wcs120 были картированый с использованием вестерн- и Саузерн-блоттинга на дителоцентрических сериях сорта ChinesSpring. Идентифицированные гены были локализованы в длинных участках гомологичных групп 6-х хромосом всех трех геномов гексаплоидной пшеницы. Близкие виды, также несущие A, АВ или D геномы также исследовались с использованием вестерн- и Саузерн-блоттинга с wcs120- зондами и WCS120- антителами. Все близкородственные виды несли один или более геномов гексаплоидной пшеницы и продуцировали 50 кДа белок, реагирующи с антителами и определяемы при помощи вестерн-блоттинга, и wcs120-гомологи, которые определялись при помощи Саузерн-блоттинга во всех видах. Отсутствие участка 6DL хромосомы в гексаплоидной пшенице сорта ChinesSpring вызывало отсутствие синтеза 50 кДа белка, что не только указывало на локализацию wcs120 в данном участке 6DL-хромосомы, но также и подтвердило молчание wcs120-гомологов в 6А хромосоме. Были также исследованы содержание белков, реагирующих с антителами на WCS120, и уровни холодоустойчивости в сериях лини с заменой хромосом сорта ChinesSpring на хромосомы сорта Cheyenne. В ходе экспериментов было установлено, что 5А хромосома сорта Cheyenne увеличивала холодоустойчивость пшеницы сорта ChinesSpring. Денситометрия вестерн-блоттингов для определения содержания белка показала, что хромосома 5А имеет регуляторный эффект на экспрессию гена семейства wcs120, располагающегося на хромосомах 6-о группы всех трех геномов гексаплоидной пшеницы.


4 Специфические для низкой температуры и генных богатых глицином белков

Специфическая для низко температуры кДНК пшеницы pTACR7, представляет ген, определенный как tacr7 из озимой пшеницы. Термин низкотемпературно-специфический используется авторами, поскольку экспрессия гена tacr7 не вызывается обработкой экзогенно абсцизовой кислотой или другими типами стресса, такими, как солевой стресс, обезвоживание и тепловой стресс. PTACR7 был выделен при помощи олигонуклеотидного зонда, сходного с pHVCR8 из ячменя посредством RT-PCR с мРНК из ткани побегов пшеницы. На основании предсказанной аминокислотной последовательности были определены характеристики этого белка. Установлено, что TACR7 очень гидрофобный белок, с единственно трансмембранно областью и богат лейцином. Изучение уровне содержания копи tacr7 показало их накопление в проростках пшеницы, верхушечной ткани и каллусной культуре после переноса объектов из контрольных условий на холод. В ходе экспериментов наблюдалось отсутствие обнаруживаемых нозерн-гибридизацие транскриптов pTACR7 в проростках или каллусах, обработанных экзогенно абсцизовой кислото, после солевого стресса, обезвоживания или теплового стресса. Транскрипты tacr7 накапливались в ткани меристемы во время экспонирования при 20 C в больше степени в холодоустойчиво озимо пшенице 16029), чем холодочувствительной 16169) с наибольшим различием между генотипами на третьей неделе закаливания. Таким образом, кодируемы tacr7 белок по своим характеристикам уникален среди описанных в литературе индуцируемых низко температурой белков пшеницы.

При изучении мутации сердцевины пентамера CCGAC двух предполагаемых индуцируемых низко температурой элементов в 5'-области индуцируемого холодом гена BN115 озимого рапса при помощи анализа нерезидентной экспрессии равнодействующих мутированных слияний BN115-промотор-GUS было установлено уменьшение низкотемпературного регулирования промотора. Это указывает на то, что последовательность CCGAC в гене BN115 является чрезвычайно важно для его ответа на низкую температуру. Напротив, мутация двух G-боксов CACGTG, находящихся между индуцируемыми низко температурой элементами в то же области промотора, не изменила индуцируемую холодом экспрессию гена. Замена возможно области энхансера промотора BN115 на энхансер из промотора CaMV 35S выразилась в увеличении уровня низкотемпературно индукции экспрессии GUS.

При изучении кДНК ячменя были получены ген-специфические зонды, кодирующие два типа глицин-богатых белков: HvGRP2, характеризуемы цитокератин-подобно и цистеин-богато областями, и HVGRP3, чья основная особенность - наличие РНК-связывающей области. В ходе исследования было установлено, что экспрессия генов HvGRP2 и HVGRP3, которые присутствуют в одно или двух копиях на кажды гаплоидны геном, была повсеместно, и было показано, что ген HVGRP3 модулируется изменением услови освещения. Холодовое возде ствие также увеличивало уровни содержания мРНК HvGRP2 и HVGRP3.

При изучении действия окружающей среды на экспрессию индуцируемых холодом генов на уровне изменения содержания мРНК и тестировании взаимосвязи экспрессии генов и холодно акклиматизации растений ячменя в фазе третьего и четвертого листа было проведено несколько вариантов опыта. В первом варианте растения были выращены в различных температурных условиях между 20/150 C и +4/-40 С, во втором варианте растения были перенесены с температуры 20/150 C на температуру 6/20 C и в третьем варианте опыта растения были выращены в условиях засухи или недостатка питательных веществ. В ходе экспериментов измерялись при помощи метода отрастания морозоустойчивость растений и уровни содержания мРНК для трех индуцируемых холодом генов: blt4.9, blt14 и blt101 из меристематических тканей побегов. Результаты экспериментов показывают, что закаленность растени и уровни экспрессии мРНК генов blt4.9, blt14 и blt101 повышались при более низких температурах роста. В ходе экспериментов было также установлено, что на степень изменения содержания мРНК этих генов в ответ на изменение температуры среды значительное влияние оказывали предшествующие температурные условия и возраст растения. При этом уровень закаленности растений сильно коррелировал с уровнями содержания мРНК этих генов в растениях, выращенных в различных температурных условиях. Эта корреляция не распространялась на растения, подвергнутые действию недостатка питательных веществ или засухи.

При изучении влияния низко температуры на экспрессию генов в Poncirustrifoliataиз закаленных к холоду растений были клонированы шесть кДНК, представляющие уникальные индуцируемые холодом последовательности. В ходе экспериментов было обнаружено, что гены pbcorc115 и pbcorc119 принадлежат к одному семейству генов. Данные сиквенса указывают на то, что pbcorc115 и pbcorc119 содержат открытую рамку считывания, кодирующую полипептид с молекулярно массой 19.8 кДа и полипептид с меньшей молекулярной массой 11.4 кДа, соответственно. Анализ предсказанной аминокислотной последовательности обнаружил три больших повтора в COR19 и только один повтор в COR11. В каждом повторе были выявлены два элемента -Q-кластеризованный тракт и K-богатый мотив. K-богатый мотив был сходен с подобными мотивами у белков класса D-II из хлопка и группы 2 белков LEA. Сериновый кластер, характерный для многих сходных с группой 2 LEA белков, также был найден в этих белках. В то же время было обнаружено, что в них он находился в необычном положении относительно карбокси-конца. В COR19 и COR11 также присутствовал двусторонни мотив основных остатков, сходных с известными ядерными маркерными последовательностями, что позволяет предположить, что члены данного семе ства белков могут иметь ядерную маркерную функцию. В ходе экспериментов авторами была исследована экспрессия мРНК COR19 в ответ на холодовую акклиматизацию, засуху, затопление и засоление. Результаты показали, что экспрессия COR19 в ткани листа индуцировалась в ответ на холодовую акклиматизацию, но подавлялась во время засухи и затопления.

W. Goodwin с соавторами при изучении озимого рапса изолировали кДНК и выделили ген, кодирующий гибридный богаты пролином белок. Предполагаемы белок по структуре является модульным. При анализе его аминокислотной последовательности установлено, что N-терминальная область данного белка имеет свойства сигнального пептида, который может направлять белок в эндоплазматический ретикулум. Последовательность аминокислот от 27 до 287 имеет три области, которые содержат высокие уровни содержания пролина и нескольких других аминокислот, часто встречающихся в богатых пролином белках клеточной стенки. Эти области характеризуются повторяющимся аминокислотным мотивом. С-терминальная область содержит три предполагаемых мембранно-связывающих участка и имеет высокую степень сходства с аминокислотами некоторых разновидностей гибридных богатых пролином белков. На основе этих данных авторы делают вывод, что данный белок секретируется из клетки, размещается в клеточной стенке и заякоривается в плазматической мембране посредством С-терминально области. В ходе экспериментов установлено, что транскрипты, кодирующие данный белок, индуцируются в ткани листа в течение 8 ч обработки холодом и их содержание быстро снижается при возвращении растения к нормальным температурам. В то же время установлено, что транскрипты не индуцируются тепловым шоком, обезвоживанием, экзогенно абсцизовой кислотой или раневым стрессом, тогда как транскрипты контрольного гена B. napusиндуцируются обезвоживанием и экзогенно абсцизовой кислотой.

При изучении экспрессии генов кукурузы были выделены кДНК и соответствующий геномный клон члена семейства генов, кодирующих a-субъединицу фактора элонгации трансляции 1. Предсказанная аминокислотная последовательность из 447 остатков прерывается в гене одним интроном. Саузерн-блот анализ показал, что клонированный ген ef1a - один из семейства, состоящего, по меньше мере, из шести генов. Как показал нозерн-блот анализ, содержание мРНК данного белка в листьях кукурузы увеличивается при низко температуре, в то время как в корнях уровень мРНК ef1 о резко уменьшается. Эти результаты показывают, что экспрессия EF1 о дифференцированно регулируется в листьях и корнях во время холодового стресса.

5. Гены дегидринов и гены индуцируемые экзогенной абсцизовой кислотой

Одними из наиболее изученных семейств генов, индуцируемых низко температурой, являются гены дегидринов и гены, индуцируемые экзогенно абсцизовой кислотой. Гены данных семейств к настоящему времени обнаружены практически во всех изученных видах растений - как травянистых, так и древесных.

При селективном исследовании с использованием первичных антител против богато лизином области дегидринов библиотеки кДНК, созданной из закаленных тканей коры персика, было обнаружено, что некоторые клоны обладают высоко степенью сходства с дегидринами. Нозерн-блоттинг с использованием клона 5А показал, что 1,8 kb участок экспрессировался сезонно и в листопадных, и в вечнозеленых генотипах, а также индуцировался водным дефицитом. Вечнозеленые и листопадные генотипы значительно различались как по их способности к холодовой акклиматизации, так и по сезонно экспрессии транскриптов и белков дегидринов. У обоих генотипов максимум экспрессии транскриптов был отмечен зимо и они не обнаруживались в мае - июле. Экспрессия белков была сходна с экспрессией транскриптов, в то же время экспрессия белка в вечнозеленом генотипе значительно увеличивалась после накопления транскриптов. Полученные данные указывают на то, что во время холодовой акклиматизации могут существовать различные уровни регуляции дегидринов. В ходе исследований авторами также был изолирован клон G10a, содержащий полны ген дегидрина, обозначенный ppdhn1. Этот ген кодировал белок из 472 аминокислот с предсказанным размером 50020 Да. Кодируемы белок содержит девять богатых лизином повторов, характерных для дегидринов и два DEYGNP мотива. Генный блот с использованием зонда к клону 5а показал, что в персике имеется один или два высокогомологичных гена.

При изучении белков, экспрессирующихся в ответ на низкие температуры у Brassicanapus, был очищен до почти гомогенного состояния рекомбинант из белка BN28 и была определена его структура. Антитетела, полученные против rBN28, были использованы для характеристики рекомбинантного и нативного белков. Похожи на многие другие индуцируемые низко температурой белки, BN28 необычайно гидрофилен и термостабилен настолько, что остается в растворе после кипячения. Иммуноблот-анализ клеточных фракци показал, что BN28 не был ассоциирован с клеточными мембранами и находился исключительно в растворимой фракции клетки. Хотя ранее предполагалось, что BN28-подобные белки из Arabidopsisthalianaдолжны обладать антифризной активностью, такая антифризная активность не была определена при рекристализации льда с rBN28.

Из библиотеки кДНК, изготовленной из акклиматизированных к холоду этиолированных проростков рапса был изолирован клон, соответствующий регулируемому холодом гену. Анализ последовательности и поиски гомологи показали, что этот ген кодирует белок, гомологичный с ATP-зависимой фосфоенолпируват карбоксикиназой из Saccharomycescerevisiae,

Trypanosoma, Rhizobium sp., иEscherichia coli. Аналог из B. napusбыл обозначен как BnPEPCK. Потенциальный ATP-связывающий сайт, существующи во всех белках PEPCK, также обнаруживался и в BnPEPCK. Хотя в ходе исследований и была установлена конститутивная экспрессия BnPEPCK в контрольных проростках при комнатно температуре, было также установлено, что уровень содержания копи его мРНК статистически достоверно повышался при 4 0 C и уменьшался до контрольного уровня, когда проростки возвращались на контрольную температуру. Использование антител, полученных против рекомбинантного гистидин-BnPEPCK слитого белка, продемонстрировало, что уровень содержания белка BnPEPCK коррелирует с накоплением транскриптов Bnpepck.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 124
Бесплатно скачать Курсовая работа: Влияние гипотермии на экспрессию генов