Курсовая работа: Влияние содержания 1,2-полибутадиена на свойства динамических термоэластопластов

Эксплуатационные показатели ДТЭП: высокая стойкость к озону и ультрафиолетовым излучениям, стойкость к химическому воздействию, широкий температурный интервал работоспособности стабильно высокое качество, минимальные допуска размеров на изделии, низкая усадка, сопротивление ударным нагрузкам, выносливость к изгибу, высокая прочность.

1.3 Структура ДТЭП

Структура смесей полимеров зависит от термодинамической совместимости полимеров в процессе их получения. Количество термодинамически совместимых пар невелико. Повысить совместимость в смесях полимеров можно различными приемами: выбором полимеров, характеризующихся способностью к повышенному межмолекулярному взаимодействию, увеличением степени совулканизации полимеров, введением добавок, способствующих совместимости, воздействием на смесь высокого давления в сочетании с повышенной скоростью сдвига.

Согласно современным представлениям, взаиморастворимость и микрорасслаивание имеет двухфазную природу. Направление процесса растворения определяется термодинамическими изменениями, а скорость - кинетическими. Коэффициенты диффузии в системе полимер-полимер на 3-6 порядков меньше, чем для низкомолекулярных систем (10-15 - 10-19 м2 /с при Т<Тпл или Тс и 10-12 -10-14 м2 /с при Т>Тпл ). Это определяет трудности в достижении равновесия в полимерных системах. Однако существует общепринятое мнение, что для получения из смесей полимеров технических композиционных материалов с высоким комплексом свойств не обязательна их термодинамическая совместимость, а требуется создание высокодисперсной гетерогенной структуры "полимер в полимере". Наличие микрообластей с различными модулями приводит к облегчению релаксации и диссипации напряжения и улучшению сопротивляемости всей системы нагрузкам, но с термодинамической точки зрения - неравновесным структурам [5].

Коллоидная структура смесей полимеров может образоваться при диспергировании двух вязкоупругих несовместимых полимеров в процессе их смешения. Лучшее диспергирование в смеси полимеров достигается при соотношении вязкостей дисперсной фазы и матрицы 0,3-0,6 и близких нормальных напряжениях.

Особенности поведения ДТЭП обусловлены формированием при совмещении каучука и термопласта специфической структуры. ДТЭП представляют собой двухфазные системы, при этом в непрерывной фазе термопласта распределены частички сшитого каучука размером 0,5-10 мкм. Взаимодействие между фазами осуществляется за счет физических связей с образованием развитого граничного слоя [7].

В работе [15] cпомощью метода сканирующей электронной микроскопии (СЭМ) исследовали морфологию смеси, содержащей ПП и 80 мас. % СКЭПТ. Было обнаружено, что в исходной невулканизованной системе ПП является дисперсной фазой. В процессе динамической вулканизации по мере роста плотности сшивки каучука происходит фазовая инверсия: ПП становится матрицей, а СКЭПТ - дисперсной фазой. При этом сшитые частицы каучука с размером порядка 0.8-2.0 мкм плотно упакованы в непрерывной матрице термопласта.

Для создания ДТЭП с высокими механическими характеристиками необходимо смешение дисперсий субмикронных размеров. Так, для смесей на основе ПП: СКЭПТ = 40: 60 предельные значения прочности и удлинения при растяжении возрастают с уменьшением размера доменов (рис.1.3) [8]

Ри c.1.3 Диаграммы "напряжение - удлинение" для смесей ПП: СКЭПТ= 40: 60 с различным размером частиц эластомерной фазы ( ´ означает разрыв). Среднечисленный размер дисперсной фазы, мкм: 1 - 72, 2 - 39, 3 - 17, 4 - 5,4, 5-1,5.

Важно отметить, что граница раздела между фазами размыта. Частицы каучуковой фазы являются микрогелем, так как при нагревании системы в условиях "динамической вулканизации" создаются условия сшивания макромолекул. Однако сшивание происходит при непрерывном перемешивании, поэтому в результате механохимических процессов каучуковая фаза разрывается на отдельные частицы и получается дисперсия микрогелевых частичек сшитого каучука, например, вулканизованного СКЭПТ в непрерывной фазе полипропилена. Свойства ДТЭП на основе СКЭПТ и ПП, полученных высокотемпературным смешением, зависят от размера таких микрогелевых частиц вулканизованного каучука. Условная прочность при растяжении и относительное удлинение повышаются при уменьшении диаметра частиц. Прочность при растяжении изменяется обратно пропорционально квадратному корню из суммы среднего диаметра частиц и константы, а энергия разрушения - обратно пропорционально сумме среднего диаметра частиц к константе. Размер микрогелевых частичек зависит, как и для механических смесей полимеров, от межфазного натяжения, молекулярно-массового распределения полимеров, целевых ингредиентов, отношения вязкость эластомера и термопласта.

В процессе быстрого охлаждения расплава смеси часть термопласта интенсивно переходит в кристаллическое состояние, тогда как другая его часть, из-за близости поверхностных энергий смешиваемых каучука и пластика, "захватывая" часть макромолекул каучука или участков сетки, образует дефектно-кристаллическую структуру [9]. Таким образом, вулканизованные частички СКЭПТ оказываются окруженными прослойками, тяжами кристаллического полипропилена, связь между которыми осуществляется через межфазный слой, включающий молекулы обоих полимеров [8].

В работе [17] изучали структуру невулканизованных и динамических вулканизованных смесей изотактических ПП с тройным этиленпропиленовым сополимером при содержании последнего 5-85 мас. % методом атомно-силовой микроскопии (АСМ).


Рис.1.4 АСМ изображения поверхностей отпрессованных образцов смесей, содержащих невулканизованный СКЭПТ-4044 с соотношением [ПП]: [СКЭПТ] = 3,00 (а), 1,33 (б), 1,00 (в) и 0,67 (г) Размер изображения 65 x45 мкм.

На рис.1.4 приведены АСМ-микрофотографии смесей на основе СКЭПТ-4044. В смесях с соотношением [ПП]: [СКЭПТ] ≥ 1.00 мас. % матрицей является термопласт (рис.1.4 а-в). Морфология образца, содержащего 25 мас. % СКЭПТ-4044, характеризуются однородным распределением мелко дисперсных частиц эластомера в ПП-матрице (рис.1.4 а). С увеличением доли эластомера до 40-50 мас. % происходит укрупнение его доменов и изменение их формы, хотя термопласт по-прежнему является матрицей (рис.1-4 б, в). При содержании 60 мас. % эластомера в смеси наблюдается морфология взаимопроникающих фаз (рис.1.4 г).

Морфология образца, содержащего 25 мас. % эластомера, характеризуется однородным распределением мелкодисперсных частиц с размерами менее 0.3 мкм (рис.1.4 а). В смесях с соотношением компонентов, равным 1.33 и 1.00, присутствуют как мелкие частицы каучука с диаметром ~0.5-4.0 мкм, так и более крупные домены со средним размером 10х20 мкм, распределенные в непрерывной ПП - матрице (рис.1.4 б, в).

Процесс динамической вулканизации не приводит к существенным изменениям морфологии: домены ПП однородно распределены в матрице эластомера, и их размер в среднем почти не меняется. Однако форма доменов становится более правильной, что, по-видимому, является следствием кристаллизации ПП в матрице вулканизованного СКЭПТ, имеющего большую жесткость.

Структура смесей до и после прессования различна. Это наиболее заметно в случае материалов с большим содержанием СКЭПТ (≥50 мас. %). На рис.1.5 представлены АСМ-изображения смесей с каучуками обоих типов до и после термической обработки (прессования). Видно, что непосредственно после смешения наблюдается морфология взаимопроникающих фаз (рис.1.5 а, в). Структура отпрессованных образцов в обоих случаях резко меняется - частицы эластомера существенно укрупняются (рис.1.5 б, г). Вероятно, это является следствием интенсивного течения более низковязкого ПП в условиях воздействия температуры и давления, а также коалесценции мелких эластомерных частиц в крупные домены в отсутствие трехмерной сетки, образующейся при вулканизации [17].

Рис.1.5 АСМ-изображения образцов невулканизованных смесей, содержащих 50 мас. % СКЭПТ-4044 (а, б) и 75 мас. % СКЭПТ-4535 (в, г) до (а, б) и после прессования (б, г). Размер изображения 50х50 мкм.

Сшитые каучуковые частицы формируют трехмерный структурный каркас, плотность которого возрастает с повышением их концентрации. Это происходит, по-видимому, в результате агломерации частиц СКЭПТ. Структура динамически вулканизованных смесей, содержащих до 75 мас. % каучука, аналогична структуре наполненных композитов. Она стабильна и не претерпевает существенных изменений даже после нескольких циклов переработки в отличие от смесей с невулканизованным СКЭПТ [18].

Наиболее широко применяются термопластичные эластомеры на основе полиолефинов - этилена, пропилена, их полимеров и сополимеров. По сравнению с другими типами ДТЭП они имеют низкую себестоимость, наибольший температурный диапазон работоспособности, более высокую стойкость к действию озона, влажности и коррозии.

В настоящее время наиболее детально исследованы и широко применяются ДТЭП на основе композиций СКЭПТ и полипропилена, свойства которых приведены в табл.1.1 По сравнению с традиционными резинами "Сантопрен", как и аналогичные ему материалы, имеет более низкую плотность (на 20-30%) и как следствие - меньшую стоимость единицы изделия. Свойства "Сантопрена" и различных ДТЭП приведены в табл.1.1.

Таблица 1.1 Основные свойства ДТЭП на основе различных полимеров, и "Сантопрена" фирмы "Монсанто" (США)

Показатели СКЭПТ-ПП Сантопрен СКИ - ПА НК - ПП
Условная прочность при растяжении, МПа 7-20 7-27 15-30 6-20
Относительное удлинение, % 150-400 375-600 200-370 200-500
Напряжение при 100% удлинении, МПа 6-15 2-10 78-96 -
Твердость по Шору 75-95 64-97 49-100 60-70
Сопротивление раздиру, кН/м 30-45 26-112 2-3 -
Температурный интервалработоспособности,°С -50+150 -50+150 -40+150 -

По сравнению с обычными резинами на основе СКЭПТ и ХСПЭ, ДТЭП на основе СКЭПТ и ПП имеют более высокую термостойкость и стойкость к набуханию в агрессивных средах и приближаются по маслостойкости к резинам на основе полихлоропрена.

1.4 Физико-механические свойства ДТЭП

В зависимости от соотношения каучук-полиолефин можно получать ДТЭП с широким спектром свойств: от эластичных до ударопрочных.

Таблица 1.2 Основные физико-механические показатели ДТЭП на основе СКЭПТ-ПП

Показатели Содержание ПП, м. ч.
25 30 40 50 60 70 80
Прочность при разрыве, Мпа 5,4 7,3 9,1 9,5 16,8 16,6 14
Относительное удлинение при разрыве, % 170 270 320 250 430 390 120
Остаточное удлинение при разрыве, % 10 36 52 68 240 260 64
Сопротивление раздиру, кН/м 36 36 55 67 81 105 113
Температура хрупкости, 0 С -61 -61 -60 -58 -58 -56 -56

В целом для широкой гаммы ДТЭП характерны следующие свойства:

1. Твердость ДТЭП позволяет производить изделия от гибких до полужестких и жестких, сохраняя при этом благоприятные механические свойства

К-во Просмотров: 280
Бесплатно скачать Курсовая работа: Влияние содержания 1,2-полибутадиена на свойства динамических термоэластопластов