Курсовая работа: Выбор способа сварки диафрагменной лопатки паровой турбины

9. Частота автоколебаний: f»Vсв /d.

4. Исследование влияния основных параметров сварки на форму шва и качество сварного соединения

Влияние тока электронного луча на глубину проплавления металла

С целью определения зависимости величины сварочного тока от толщины соединяемых деталей была проведена серия экспериментов. Сварку выполняли с помощью электронно-лучевой установки «Луч-4» на образцах из нержавеющей стали. Полученные зависимости при разных скоростях сварки и при общих остальных параметрах (U = 30 кВ, l = 100 мм, Iф = 100мА).

Из представленных графиков можно сделать вывод, что при увеличении тока электронного луча, глубина проплавления тоже увеличивается.

Влияние удельной мощности электронного луча на геометрию зоны проплавления

В связи с тем, что энергетический баланс процесса электронно-лучевой сварки близок к аналогичному балансу при дуговой сварке, связь параметров электронного луча с характеристиками зоны проплавления можно дать в виде уравнения для секундного объема плавления металла:


0,24 IUhи hт = rVFпр Sм , (1)

где Fпр площадь проплавления,см2 ; Sм = (сТпл + Lпл ) – теплосодержание жидкого металла при температуре плавления, кал/г.

Из этого уравнения следует, что чем выше погонная энергия Q = 0,24 IU/V, тем больше площадь проплавления. Это действительно справедливо для процесса дуговой сварки, который в большинстве случаев осуществляется при q2 <q2 * . Для электронно-лучевой сварки экспериментально установлено, что обобщенный параметр – погонная энергия Q не является определяющим при количественной оценке процесса. При постоянной погонной энергии можно получить глубину проплавления и 15 и 2 мм. Этот факт следует считать естественным, так как образование кинжального проплавления при электронно-лучевой сварке определяется не только количеством введенной энергии, но, и ее плотностью.

Эффективность процесса проплавления металла электронным лучом определяется величиной теплового КПД hпр = hи hт , где hи – эффективный; hт – термический КПД. Величина эффективного КПД hи при воздействии луча с образованием канала в веществе практически приближается к единице. При оценке эффективности процесса проплавления существенную роль играет величина термического КПД.

Для использования в инженерных расчетах в уравнениях (1) должна быть учтена удельная мощность электронного луча q2. С этой целью произведены эксперименты по электронно-лучевой сварке с постоянной погонной энергией, но разной степенью фокусировки (разной удельной мощностью). Сварку выполняли с помощью электронно-лучевой установки ЭЛУ-9Б с электронной пушкой ЭП-60/10М на образцах из нержавеющей стали размером 500 х 80 х 20 мм.

В первой серии опытов образцами служили две пластины толщиной 10 мм каждая, сварку выполняли встык с зазором. Во второй серии в качестве образцов использовали пластины толщиной 20 мм.

В процессе сварки через каждые 60 мм длины шва изменяли фокусировку электронного луча на 4 мА в диапазоне токов фокусировки от 76 до 100 мА. Таким образом, концентрация мощности при постоянной погонной энергии в процессе наложения сварного шва постепенно увеличивалась, а после достижения максимума уменьшалась. Рабочее расстояние сохранялось постоянным h = 90 мм (см. табл. 3).

Анализ макрошлифов и очертаний зон проплавления показал, что при постоянном значении погонной энергии можно в широком диапазоне изменять геометрию проплавления с помощью только одного параметра режима сварки – степени фокусировки электронного луча. При этом очертание зоны проплавления изменялось от полукруглого до кинжального, а при больших отрицательных значениях степени фокусировки переходило в «клыкообразное». Опыт показал также, что максимуму глубины проплавления соответствует минимальная ширина шва. Зависимость глубины проплавления Н от степени фокусировки электронного луча DIф приведена на рис. 5. Под степенью фокусировки DIф понимают алгебраическую разность токов магнитной линзы при сварке и фокусировке на малом токе луча (2–4 мА): DIф = ±(Iф – I0 ) – За нулевую точку отсчета принят ток фокусировки Iф = 88 мА.

Характер кривой Н= f (DIф ) (рис. 4) Н, свидетельствует, что степень фоку – мм сиповки, соответствующая максимальному проплавлению на данном режиме, зависит от тока луча: с уменьшением тока луча до величины, обеспечивающей максимальное проплавление, DIф стремится к нулю.

Таблица 3. Характеристика экспериментальных очертаний зон проплавления

Параметр Условный индекс шва
1 2 3 4 5 6 7
Ток фокусировки Iф, мА. 76 80 84 88 92 96 100
Степень фокусировки DIф , мА. -12 -8 -4 0 +4 +8 +12

Коэффициент формы шва,

Кф = Н/В.

2,11 4 2,45 1,46 1,0 0,72 0,56
Экспер-ная ширина зоны проплавления, мм 24 22 21 20,6 32 47 59
Опыт Ток фокусировки, мА
72 76 80 84 88 92 96 100
№1
  • 1
  • 2
  • 3
  • 4
  • 5
  • К-во Просмотров: 224
    Бесплатно скачать Курсовая работа: Выбор способа сварки диафрагменной лопатки паровой турбины