Курсовая работа: Вычисление интегралов методом Монте-Карло
if (con_sum > _p(con_b,ii,1)) { con_ok=0; break ; }
}
}
fu_int=0;
if (con_ok != 0)
{
mcres.in_G_int++;
// точки 3d графика
if (d_int==3)
if (mcres.in_G_int <= plot_dim_max)
{
_p(xyz,mcres.in_G_int,1)=_p(x_int,1,1);
_p(xyz,mcres.in_G_int,2)=_p(x_int,2,1);
_p(xyz,mcres.in_G_int,3)=_p(x_int,3,1);
}
// значение интегрируемой функции
switch (mcres.fun_type)
{
case 2: // квадратичный член
for (ii=1; ii <= d_int; ii++)
for (jj=1; jj <= d_int; jj++)
if (_p(fun_A,ii,jj) != 0)
fu_int += _p(x_int,ii,1)*_p(fun_A,ii,jj)*_p(x_int,jj,1);
case 1: // линейный член
for (ii=1; ii <= d_int; ii++)
if (_p(fun_b,ii,1) != 0)
fu_int += _p(fun_b,ii,1)*_p(x_int,ii,1);
case 0: // постоянная
fu_int += fun_cd;