Курсовая работа: Вычисление интегралов методом Монте-Карло
}
// объемлющий параллелепипед
a_int=new matd("con_xmin.txt");
b_int=new matd("con_xmax.txt");
// разность границ параллелепипеда
ba_int=new matd;
ba_int=&(*b_int - (*a_int));
// аргумент интегрируемой функции
x_int=new matd(d_int,1);
// объем объемлющего параллелепипеда
mcres.V0_int=1;
for (j=1; j <= d_int; j++)
{
if (_p(ba_int,j,1) <= 0)
{
DbBox("Нижняя граница объемлющего параллелепипеда выше верхней для \
координаты ",j);
goto clean_exit;
}
mcres.V0_int=mcres.V0_int*_p(ba_int,j,1);
}
// начальный объем выборки
mcres.n1_int=10000;
// основной цикл для достижения заданной точности
// число итераций, потребовавшихся для достижения заданной точности
mcres.n_ite=0;
getdate(&dat); gettime(&tim); mcres.t_start=dostounix(&dat,&tim);
WaitForm->Show();