Курсовая работа: Вычисление интегралов методом Монте-Карло

Исходные данные представляют собой троек точек .

Коэффициенты и определяются из системы:

, (16)

где ,

.

1.4 Алгоритм расчета интеграла

Реализованный алгоритм включает следующие шаги:

1) выбирается начальное значение , разыгрываются случайные векторы из и определяются и ;

2) в зависимости от вида погрешности (абсолютная, относительная) определяется достигнутая погрешность; если она меньше целевой, вычисление прерывается;

3) по формулам (13) или (14) вычисляется новый объем выборки;

4) объем выборки увеличивается на 20%

5) переход к шагу 1;

6) конец.

2. ГЕНЕРАТОР ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

2.1 Генератор псевдослучайных чисел применительно к методу Монте – Карло.

В любом алгоритме использующем метод Монте – Карло генератор псевдослучайных чисел играет очень важную роль. Степень соответствия псевдослучайных чисел заданному распределению является важным фактором проведения качественных статистических испытаний.

2.2 Алгоритм генератора псевдослучайных чисел

В программе реализован конгруэнтный метод генерации псевдослучайных чисел \3\:

, (17)

где =8192,

=67101323.

Авторский код, реализующий защиту от переполнения был, реализован на С++. Перед использование первые три числа последовательности удаляются. Для получении чисел из интервала (0,1) все числа делятся на .

2.3 Проверка равномерности распределения генератора псевдослучайных чисел.

Проверка равномерности распределения псевдослучайных чисел проводилась с помощью стандартного критерия χ2 \2\.

Были использованы 3 последовательности псевдослучайных чисел, определяемых стартовыми значениями 1, 1001, 1000000 длиной 300000.

Интервал (0,1) подразделялся на 50 равных интервалов и программно подсчитывались абсолютные частоты (рис. 1).

Рис. 1

Результаты проверки приведены в Таблице 1.

Таблица 1

стартовое значение ГСЧ

1

1001

К-во Просмотров: 703
Бесплатно скачать Курсовая работа: Вычисление интегралов методом Монте-Карло