Курсовая работа: Вывод уравнения Лапласа. Плоские задачи теории фильтрации
. (4.10)
Массовая скорость фильтрации в любой точке пласта М (рис.4.2) находится по правилу суперпозиции сложения векторов скорости от действия источника и стока
. (4.11)
Величина корня есть расстояние между источником и стоком 2а и, следовательно, формула (4.11) перепишется в виде
, (4.12)
Для поддержания пластового давления часто используется нагнетание воды в пласт. Определим для однородной несжимаемой жидкости время движения частицы по кратчайшему пути между нагнетательной и эксплуатационной скважинами, т.е. по оси 0х. При жестководонапорном режиме решается при этом вопрос о времени, протекшем от начала закачки воды в пласт до начала её прорыва в эксплуатационную скважину.
Чтобы решить указанную задачу выразим скорость в (4.12) через производную расстояния по времени и, поместив начало координат в сток О1 , проинтегрируем полученное уравнение по х от х0 до х. Тогда время движения частицы от некоторой точки х0 до точки х определится зависимостью
. (4.13)
Время обводнения Т, т.е. прохождения частицы расстояния О1О2= 2а определится из (4.13), если принять х=0; х0=2а
, (4.14)
где m - пористость; Q - объёмный дебит.
Зная Т можно найти площадь обводнения w, приравнивая объёмы TQ и mhw. Откуда
,(4.15)
Анализ формул (4.13) и (4.14) показывает, что расстояние, пройденное частицей за время Т от нагнетательной скважины до эксплуатационной, вдвое больше расстояния пройденного другой частицей за это же время в положительном направлении оси х.
4.1.2 Приток к группе скважин с удаленным контуром питания
В большинстве практических случаев контур питания находится довольно далеко. Поэтому решения данной задачи позволяют провести предварительную оценку однородных участков месторождений.
Пусть в пласте расположена группа из n скважин (рис. 4.5) с различными для общности дебитами Gi, забойными потенциалами pi и радиусами скважин ri. Расположение скважин задано и на достаточно большом удалении находится контур питания, форма которого неизвестна, но известен порядок расстояния rк от контура питания до группы скважин При этом rк на много больше расстояния между скважинами. Считаем, что дан потенциал контура j к и забойные потенциалы скважин j i.
Для определения дебитов используем формулу (4.2) при помещении точки М на забое каждой скважины, что позволяет записать n - уравнений вида
, (4.16)
где rci - радиус скважины на которую помещена точка М; rji - расстояние между i - ой и j - ой скважинами; jci - забойный потенциал i - ой скважины.
Неизвестных же - n+1, так как константа тоже неизвестна. Для нахождения константы С воспользуемся условием j=jк на удалённом контуре питания:
, (4.17)
Приближение заключается в том, что для удаления точек контура питания от скважин принимаем одно и тоже расстояние rк , что справедливо для достаточного удаления контура, учитывая что оно находится под знаком логарифма. Уравнение (4.17) и будет (n+1 ) уравнением.
Таким образом плоская задача интерференции при удалённом контуре питания сводится к решению алгебраической системы уравнений первой степени (4.16),(4.17).
При помощи данной системы можно находить или депрессию при заданном дебите, или получить значения дебитов при заданных депрессиях. При найденных дебитах можно определить пластовое давление в любой точке по (4.2), причем результат будет тем точнее, чем дальше эта точка отстоит от контура питания.
2.1.3 Приток к скважине в пласте с прямолинейным контуром питания
Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал jк . На скважине радиуса rc поддерживается постоянный потенциал jс. Найдём дебит скважины G и распределение функции j.
Так как контур питания пласта 0у является эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой 0у (рис.4.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Т.о. используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 4.1.1. задаче о совместном действии источника и стока равной производительности. Отличие данных задач только в постановке граничных условий: в задаче раздела 4.1.1. источник питания - нагнетательная скважина, а в данном случае - прямолинейный контур, а источник О2 фиктивный.