Курсовая работа: Зависимость высоты дерева от среднегодовой температуры

На основании имеющихся данных провести статистический анализ совокупности заданных чисел. В ходе работы использовать точечные и интервальные оценки параметров генеральной совокупности, а также различные графические представления данных: диаграмму, гистограммы, полигоны, регрессии. Подсчитать некоторые наиболее важные оценки по выборке и корреляционной таблице. На основании этого разработать метод оценки общей характеристики генеральной совокупности, проверить статистические гипотезы, согласовать исходные данные с теорией.

Теоретическая часть

Приведем основные определения и понятия из курса теории вероятностей и математической статистики, которые будут задействованы и использованы в данной работе.

Математическая статистика — наука о математических методах систематизации и использовании статистических данных для научных и практических выводов. Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (выборки).

Генеральной совокупностью называют совокупность объектов, из которых производится выборка.

Для того, чтобы по данным выборки можно было судить об изучаемом признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли, т.е. выборка должна быть репрезентативной (представительной). В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если её осуществлять случайно: каждый объект выборки отобран случайно из генеральной совокупности, если все объекты имеют одинаковую вероятность попасть в выборку.

Выборочной совокупностью или просто выборкой называют совокупность случайно отобранных объектов.

Репрезентативность — главное свойство выборки, состоящее в близости её характеристик (состава, средних величин и т.д.) к соответствующим характеристикам генеральной совокупности, из которой отобрана выборка.

Существует тесная связь между математической статистикой и теорией вероятностей.

Теория вероятностей — раздел математики, в котором по данным вероятностям одних случайных событий находят вероятности других событий, связанных каким-либо образом с первыми. Теория вероятностей изучает также случайные величины и случайные процессы. Одна из основных задач теории вероятностей состоит в выяснении закономерностей, возникающих при взаимодействии случайных факторов.

Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности. В данном случае мы имеем выборку случайных значений, объем которой равен n=100.

Наблюдаемые значения называются вариантами, а последовательность вариант в возрастающем порядке — вариационным рядом. Частотой называется число, которое показывает, сколько раз встречается данный вариант. Относительной частотой w называется отношение частоты к объёму выборки n.

Случайной величиной X называется величина, которая под влиянием случайных обстоятельств способна принимать различные значения.

Выборкой называется конечная совокупность результатов наблюдений X, X, ... , X, представляющих собой независимые, одинаково распределенные случайные величины.

Случайные величины описываются следующими характеристиками.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. Математическое ожидание приближенно равно среднему значению случайной величины, т.е. служит характеристикой среднего значения случайной величины.

Пусть случайная величина X может принимать только значения x1, x2,...,xn, вероятности которых соответственно равны p1, p2,...,pn . Тогда математическое ожидание M(X) случайной величины Х определяется равенством:

M(X) = x1p1 + x2p2 +…+ xnpn .

Если дискретная случайная величина Х принимает счетное множество возможных значений, то

,

причем математическое ожидание существует, если ряд в правой части сходится абсолютно.

В данном случае М(X )= 9,1947, М(Y) = 30,8216.

Существуют также и другие характеристики случайной величины – это дисперсия и среднее квадратичное отклонение.

Для определения дисперсии случайной величины необходимо ввести понятие отклонения случайной величины от ее математического ожидания.

Пусть Х - случайная величина и М(Х) - ее математическое ожидание. Рассмотрим в качестве новой случайной величины разность (Х - М(Х)).

Отклонением называют разность между случайной величиной и ее математическим ожиданием.

При определении дисперсии используется следующее свойство отклонения:

.

Это приводит к тому, что целесообразно заменить существующие отклонения их абсолютными значениями или их квадратами. Так и поступают. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что иногда приводит к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т.е. вычисляют среднее значение квадрата отклонения, которое и называется дисперсией.

Дисперсией случайной величины Х называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

К-во Просмотров: 188
Бесплатно скачать Курсовая работа: Зависимость высоты дерева от среднегодовой температуры