Курсовая работа: Зубчатые и червячные передачи
Для этих передач изгибная прочность является основным критерием работоспособности. Их проектировочный расчет начинают с определения модуля из условий изгиба:
m′ ≥ Кm [T1KFβYFS1 / (ψbdz12σFP1)]1/3, (12)
где Кm = 12,6 – для прямозубых передач; Кm = 10 – для косозубых передач. Числом зубьев z1 и коэффициентом ψbd следует задаваться.
Модуль m′ округляют по ГОСТ 9563-60. Для силовых передач m ≥ 1,5 мм.
6. Конические зубчатые передачи
6.1. Основные параметры
Конические зубчатые передачи применяют для передачи энергии между пересекающимися осями валов. Наибольшее применение имеют ортогональные передачи с межосевым углом Σ = 90° (рис. 10).
Конические колеса бывают с прямыми (в открытых передачах) и круговыми (в редукторах) зубьями. Круговые зубья очерчены линиями по дугам окружности.
Конуса с вершиной в точке О являются основными (рис.10). Внешние и внутренние торцы на конических зубчатых колесах формируют внешними (вершины Ое) и внутренними (вершины Оi) дополнительными конусами, образующие которых перпендикулярны образующей делительного конуса.
Расстояние между внешним (параметры обозначают с индексом е) и внутренним (параметры – с индексом i) дополнительными конусами определяет ширину b венца. На длине 0,5b расположен средний дополнительный конус с вершиной Оm (параметры – с индексом m). Расстояние от вершины О по образующей делительного конуса до внешнего торца е называют внешним конусным расстоянием Re , до середины ширины венца – средним конусным расстоянием Rm (рис. 10). Пересечения делительного конуса с дополнительными конусами определяют диаметры делительных окружностей ко-нического зубчатого колеса: de– внешний, dm – средний, di – внутренний делительные диаметры.- | Рис. 10 |
Угол наклона зубьев β определяют (рис. 11) углом между лучом, проведенным из вершины О, и касательной к линии зуба в рассматриваемой точке зуба. Для прямых зубьев β = 0. У круговых зубьев угол β переменный:
βe > βm > βi. За расчетный принимают угол βm в среднем сечении.
Рис. 11 | Рис. 12 Лучше всего зарекомендовали себя передачи с круговыми зубьями с углом βm = 35°. |
Наличие угла наклона повышает плавность работы, контактную и изгибную прочность, уменьшает шум, но увеличивает нагрузки на опоры и валы.
Зубья конических колес в зависимости от изменения размеров их нормальных сечений по длине выполняют в виде трех осевых форм (рис. 12).
Осевая форма I - пропорционально понижающиеся зубья (рис. 12, а). Вершины конусов делительного и впадин совпадают, высота ножки зуба пропорциональна конусному расстоянию. Применяют для прямых зубьев.
Осевая форма II– нормально сужающиеся зубья (рис. 12, б). Вершина конуса впадин Оf расположена так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу пропорциональна конусному расстоянию. Эта форма позволяет одним инструментом обрабатывать сразу обе грани зубьев, повышая производительность. Является основной для колес с круговыми зубьями, особенно в массовом производстве.
Осевая форма III – равновысокие зубья (рис.12, в). Образующие конусов делительного, впадин и вершин параллельны. Высота зуба постоянна по всей длине. Применяют для передач с межосевым углом Σ меньше 40° и круговыми зубьями при (z12 + z22)1/2 ≥ 60.
За расчетное сечение конической передачи принято среднее сечение m.
Для удобства измерения размеры конических колес принято определять по внешнему торцу е зуба.
Различают внешний окружной модуль mtе, средний окружной модуль mtm (для прямых зубьев), средний нормальный модуль круговых зубьев mnm.
Связь между модулями:
mtе = mtm / (1 – 0,5Кbe); mtе = mnm / [(1 – 0,5Кbe)cosβm];