Лабораторная работа: ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения дифференциального уравнения n-го порядка
Выполнил: студент группы ЭСЭ 22-В
Левицкий П.В.
Проверил:_______________________
Севастополь 2008
ПЛАН
1. Данные варианта задания.
2. Решение дифференциального уравнения N-го порядка
2.1. Решение дифференциальных уравнений N-гопорядка методом интегрирования при помощи характеристического уравнения:
· при y(t) = 0 и заданных начальных условиях ;
· при y(t) = 1(t) и нулевых начальных условиях;
· при y(t) = 1(t) и заданных начальных условиях;
· при y(t) = cos(aּπּt) и нулевых начальных условиях;
2.2. Решение дифференциальных уравнений N-гопорядка операторным методом:
· при y(t) = 0 и заданных начальных условиях;
· при y(t) = 1(t) и нулевых начальных условиях;
· при y(t) = 1(t) и заданных начальных условиях;
· при y(t) = cos(aּπּt) и нулевых начальных условиях;
1. Данные варианта задания
ПРИЛОЖЕНИЕ №1
( к практическому занятию №3)
Дифференциальное уравнения 4-го порядка
Т а б л и ц а № 1
№ вар | Коэффициенты дифференциальногоуравнения 4–го порядка | Правая часть уравнения и начальные условия | ||||||
а0 | а1 | а2 | а3 | а4 | b0 |
y(t) = 1(t) x0(0) = 1 x1(0) = x2(0)= x3(0) = 0 |
y(t) = cos(aּπּt) x0(0) = -1 x1(0) = x2(0)= x3(0) = 0 | |
8 | 10 | 20 | 1.7 | 0.16 | 0.08 | 10 | a = 0.35 |
2. Решение дифференциального уравнения N-го порядка
2.1 Решение дифференциальных уравнений N-гопорядка методом интегрирования при помощи характеристического уравнения
2.1.1 При y ( t ) = 0 и заданных начальных условиях
--> ЧИТАТЬ ПОЛНОСТЬЮ <--