Лабораторная работа: Моделирование систем массового обслуживания
Событием называется результата произведенной работы. События изображаются кружками, внутри которых – номер события (рис.2).
Рис. 2.
Прежде чем использовать сетевой график как основной инструмент управления ходом работ, необходимо провести его анализ и оптимизацию. После этого осуществляется привязка сети к календарю, в результате чего создается план-график проведения работ, в котором указываются даты наступления событий, начала и окончания работ, величины резервов времени и т. д. Этот документ передается ответственным исполнителям, которые приступают к выполнению работ в соответствии с разработанным графиком. Сетевое моделирование находит широкое применение при планировании научно-исследовательских и проектно-конструкторских работ. Достоинством сетевых моделей является то, что они позволяют повысить эффективность планирования. При этом следует отметить, что несмотря на все преимущества методов СПУ, их нельзя считать окончательно сформировавшимися, а сетевые модели идеальными, поскольку они не исключают влияния субъективных оценок и не обеспечивают нахождение оптимального решения.
1.3 Моделирование систем массового обслуживания
Теория массового обслуживания впервые применялась в телефонии, а затем и в других областях хозяйственной деятельности.
Например, организация нормального процесса обслуживания покупателей связана с правильным определением следующих показателей: количества предприятий данного торгового профиля, численности продавцов в них, наличия соответствующих основных фондов, частоты завоза товаров, численности обслуживаемого населения, плотности обращаемости и потребности в соответствующих товарах. Если предположить, что предприятие располагает необходимыми основными фондами, торгует товарами, имеющимися в достаточном количестве, то и тогд а в процессе обслуживания остаются такие переменные величины, которые могут существенно повлиять на качество обслуживания. Надлежит, следовательно, выбрать такой оптимальный вариант организации торгового обслуживания населения, при котором время обслуживания будет минимальным, качество – высоким, не будет излишних народохозяйственных затрат. Математический аппарат теории массового обслуживания облегчает решение этой задачи.
Системы массового обслуживания (СМО) занимают важное место во многих сферах хозяйственной деятельности. Примерами СМО могут служить телефонные станции, ремонтные мастерские (заводы, базы, бригады), погрузочно-разгрузочные комплексы (порты, товарные станции), транспортные системы, автозаправочные станции, больницы, торговые точки, предприятия бытового обслуживания и т. д. Обрабатывающее предприятие, например машиностроительный завод, его цех, участок, станок также могут рассматриваться как СМО, обслуживающие поступающее сырье, заготовки, полуфабрикаты, комплектующие изделия.
Каждая СМО имеет одно или несколько обслуживающих устройств, называемых каналами обслуживания (каналы связи, ремонтные бригады, краны, бензоколонки, продавцы, кассиры, парикмахеры, станки), и предназначена для обслуживания – выполнения потока заявок, требований, поступающих в систему большей частью в случайные моменты времени. Время обслуживания заявки также обычно случайно. Случайный характер потока заявок и времени обслуживания приводит либо к накоплению необслуженных заявок, либо к недогрузке СМО, простою ее каналов.
Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок с целью обеспечить более высокую эффективность обслуживания при малых затратах на создание и функционирование системы. Для этого теория массового обслуживания устанавливает зависимости между характеристиками потока заявок, числом и производительностью каналов обслуживания и "выходными" характеристиками СМО, описывающими результаты ее работы. Системы массового обслуживания делятся на две группы: СМО с отказами в обслуживании и СМО с ожиданием, или очередью. В СМО с отказами заявка, поступившая в момент, когда все каналы обслуживания заняты, получает "отказ" и сразу покидает систему, а не становится в очередь. Примерами системы с отказами могут служить система телефонной связи города, пошивочная мастерская, если нет "записи на очередь".
В системах с ожиданием заявка, пришедшая в такой момент, когда все каналы заняты, не уходит, а становится в очередь и ждет освобождения канала. Системы с ожиданием делятся на системы с неограниченным ожиданием начала обслуживания, с ограничением времени ожидания и с ограничением длины очереди. Обслуживание очереди (дисциплина очереди) может быть упорядоченным, т. е. строго в порядке поступления заявок, случайным, когда заявки обслуживаются в некотором случайном порядке, и с приорететами, когда в первую очередь обслуживаются заявки, обладающие некоторыми признаками.Принадлежность СМО к тому или другому виду зависит не только от характера системы, но и от приемлемой срочности обслуживания, наличия или отсутствия других СМО, оказывающих те же услуги, и других факторов.
СМО называется разомкнутой, если поток заявок не зависит от ее функционирования. Обычно это бывает, когда заявок много и интенсивность потока заявок не изменяетмся заметно в результате работы СМО. Примерами разомкнутых СМО могут служить АТС, ремонтные бригады, мастерские, если заявок на ремонт так много, что работа СМО практически не влияет на их поступление. СМО называется замкнутой, если поток заявок зависит от функционирования системы. Так ремонтное предприятие должно рассматриваться как замкнутая СМО, если заявки поступают не очень часто и их поток зависит от пропускной способности предпрятия.
Важшейшим показателем эффективности СМО является ее производительность, или пропускная способность, или среднее число заявок, которое система может обслужить за единицу времени, и относительная пропускная способность – отношение среднего числа заявок, обслуживаемых за единицу времени, к среднему числу поступивших за это время заявок.
Поток заявок характеризуется распределением заявок по времени. Исследование СМО весьма облегчается, если принимается простой поток заявок. В реальных условиях работы СМО поток заявок в большинстве случаев может считаться простейшим лишь на небольшом интервале времени, однако очень часто исследования СМО проводят, принимая поток заявок простейшим. Это объясняется, во-первых, простотой проведения анализа при таком потоке и, во-вторых, тем, что простейший поток очень напряженный, а следовательно, можно предполагать, что при реальном потоке эффективность СМО будет не хуже, чем дал анализ при простейшем потоке. Теория массового обслуживания позволяет проводить анализ СМО и при других, более сложных, чем простейший поток заявок, учитывающих нестационарность последействие, т. е. зависимость между заявками. Рассматриваются также схемы с учетом возможности выхода из строя каналов обслуживания, системы со взаимопомощью и дублированием каналов.
1.4 Элементы теории игр в задачах моделирования экономических процессов
При решении ряда практических задач в области экономики и организации сельского хозяйства приходится встречать случаи, когда две стороны преследуют противоположные цели, причем результат действий одной из сторон зависит от того, какой образ действий выберет другая сторона. Такие случаи называются конфликтными ситуациями. Конфликтные ситуации в различных областях человеческой деятельности изучает теория игр. Эта теория вырабатывает рекомендации по такому экономическому поведению противных сторон в процессе конфликтной ситуации, которое приводит к максимально возможному выигрышу.
Конфликтные ситуации, встречающиеся в реальной жизни, обусловливаются многочисленными факторами и являются весьма сложными. Чтобы можно было их изучать, необходимо отвлечься от всего второстепенного и сосредоточить внимание на анализе главных факторов, иначе говоря, надо формализовать реальную ситуацию и построить ее модель. Такую модель называют игрой. От реальной конфликтной ситуации игра отличается тем, что она ведется по предварительно оговоренным правилам и условиям. Стороны, участвующие в игре, называются игроками. В игре могут участвовать двое, тогда она называется парной. Если же в ней сталкиваются интересы многих лиц, то игра называется кооперативной. Ее участники могут образовывать постоянные или временные коалиции. При наличии двух коалиций кооперативная игра превращается в парную.
Игра представляет собой мероприятие, состоящее из ряда действий двух игроков, определяемых правилами игры. Частная возможная реализация этих правил называется партией. Результат или исход игры, к которому приводит совокупность принятых решений в процессе игры, называется выигрышем. В большинстве игр сумма выигрыша одного игрока равна сумме проигрыша другого, поэтому в любой их партии имеет место равенство:
Число может быть положительным, отрицательным и равным нулю. При - выигрыш, - проигрыш и - ничейный исход. Выигрыш или проигрыш не всегда имеет количественное выражение, например, в шахматной игре. В этих случаях результат выражают условными числами: выигрыш (+1), проигрыш (-1), ничья (0). Если один игрок выигрывает то, что проигрывает другой, то алгебраическая сумма выигрышей будет равна нулю. В этом случае имеет место игра с нулевой суммой. Бывает еще игра двух лиц с постоянной суммой. Бывает еще игра двух лиц с постоянной суммой. В этой игре два партнера непримиримо конкурируют из-за возможно большей доли разыгрываемой суммы. Посредством соответствующего преобразования такая игра может быть превращена в игру с нулевой суммой.
Развитие игры во времени сводится к ряду последовательных действий или вариантов принятия решений. Выбор одного из предусмотренных правилами игры вариантов называется ходом. Ходы делятся на личные и случайные. Личным ходом называется сознательный выбор одним из игроков одного из возможных в данной ситуации ходов и его осуществление. Случайным ходом называется выбор из ряда возможностей, осуществляемых не игроком, а каким-либо механизмом случайного выбора. Игры могут состоять из личных, случайных и смешанных ходов.
Теория игр может быть полезным инструментом планирования и управления сельскохозяйственным производством, а также прогнозирования. В задачах с конфликтными ситуациями ведется поиск хозяйственных стратегий, с помощью которых достигается максимально возможный (оптимальный) результат.
В любой игре важное значение имеет стратегия, под которой принимается совокупность правил, определяющих выбор при каждом личном ходе игрока, в зависимости от ситуации, сложившейся в процессе игры. В матричных играх применяются чистые и смешанные стратегии. Стратегии с компонентом, равным единице, называются чистыми стратегиями. Стратегии с отличными от единицы компонентами, представляющими вероятные ее доли, называются смешанными.
Задачей теории игр является нахождение решения игры, т. е. определение для каждого игрока его оптимальной стратегии и цены игры. Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средний выигрыш (или минимально возможный средний проигрыш) независимо от поведения противника. Ценой игры называется выигрыш (проигрыш), соответствующий оптимальным стратегиям игроков.
При выборе стратегий можно базироваться на различных принципах. В теории игр наилучшим принято считать поведение игроков, при котором каждый игрок предполагает, что его противник не глупее (тка называемый принцип разумности). В результате этого рекомендуется в качестве наилучшей стратегии выбирать ту, которая обеспечивает наибольший гарантированный выигрыш, т. е. выигрыш, не зависящий от действий потивника и который противник никак не может уменьшить. Элементы риска, а также просчеты и ошибки игроков во внимание не принимаются.
2. Элементы практического применения теории массового обслуживания
Рассмотрим систему массового обслуживания на примере обслуживания рабочих необходимым инвентарем.
Допустим, что в инвентарной кладовой работают два человека. Требуется определить, в какой степени они своевременно обеспечивают заявки на обслуживание, поступающие от рабочих; не обходятся ли простои рабочих в очереди дороже, чем дополнительное содержание еще одного или двух работников кладовой?
Таблица 1. – Расчет полного числа прихода рабочих в кладовую
Число приходов в единицу времени (за 15 мин) | Наблюдаемое число приходов, % | Наблюдаемая частота приходов,% | Полное число приходов рабочих (гр.1 * гр.2) | Число приходов в единицу времени (за 15 мин) | Наблюдаемоечисло приходов,% | Наблюдаемая частота приходов,% | Полное число приходов рабочих (гр.1 * гр.2) |
0 К-во Просмотров: 354
Бесплатно скачать Лабораторная работа: Моделирование систем массового обслуживания
|