Лабораторная работа: Однофакторный регрессионный анализ при помощи системы GRETL
Сначала построим модель вида
Регрессионное уравнение будет иметь вид: у = 0,14х, где х – число оборотов оборотных средств в квартал, у – уровень рентабельности.
При уровне значимости в 5% принимается гипотеза о значимости коэффициентов регрессионного анализа (p<0,05)
Стандартная ошибка регрессии - 0,261225, что является высоким результатом по сравнению со средним значением зависимой переменной – 0,71125.
Коэффициент детерминации 90% свидетельствует о высоко степени соответствия построенной модели исходным данным.
На основе результатов дисперсионного анализа при уровне значимости в 5% можно принять альтернативную гипотезу, т.е. можно утверждать, что уравнение регрессии адекватно отражает зависимость между переменными.
Проведем оценку регрессионного уравнения вида:
Результаты представлены ниже. Из полученных данных видно, что регрессионное уравнение имеет вид: у = -1,05+0,34х
Средняя ошибка регрессии ниже, чем в предыдущем случае и она составляет 0,2505.
При уровне значимости в 5% принимается гипотеза о не значимости коэффициентов регрессионного уравнения (p >0,05)
Коэффициент детерминации говорит о более низкой степени соответствия построенной модели исходным данным в отличие от предыдущей, причем намного, составляет 33%.
На основе результатов дисперсионного анализа при уровне значимости в 5% можно принять нулевую гипотезу, т.е. можно утверждать, что уравнение регрессии неадекватно отражает зависимость между переменными.
Для выбора модели составим следующую таблицу:
Значимость коэффициентов по критерию Стъюдента | значим | незначимы |
Адекватность регрессионного уравнения по критерию Фишера | адекватно | неадекватно |
Стандартная ошибка регрессии | 0,261225 | 0,250463 |
Коэффициент детерминации | 89% | 34% |
Log-likelihood | -0,0784 | 0,87 |
AIC | 2,15679 | 2,25047 |
BIC | 2,23623 | 2,40935 |
HQC | 1,62099 | 1,17887 |
Анализируя характеристики двух моделей можно прийти к выводу о том, что в второй модели меньше ошибка, но в первой лучше показатели качества регрессионного уравнения, более того, вторая модель неадекватна, т.е. не соответствует исходным данным и оценкам, полученным при помощи регрессионного анализа и регрессионная модель отражает анализируемые данные не точно. Следовательно, более точной является первая модель.
Таким образом, модель зависимости уровня рентабельности от числа оборотов оборачиваемых средств в квартал будет иметь вид: у = 0,14х.
Задание 4
По статистическим данным, описывающим зависимость уровня рентабельности на предприятии от удельного веса продовольственных товаров в товарообороте построить уравнение регрессии.
Таблица 4 –
Исходные данные к заданию 4
квартал | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Вариант 1 | ||||||||
Удельный вес продовольственных товаров в товарообороте, %. | 10 | 12 | 13 | 14 | 12 | 11 | 13 | 15 |
Уровень рентабельности, % | 15 | 16 | 18 | 19 | 15 | 14 | 17 | 20 |
Решение
Результат расчета коэффициента корреляции между данными
Коэффициент корреляции составляет 0,92, что говорит о высокой положительной зависимости между переменными
Построим уравнения регрессии вида: и , где – удельный вес прод.товаров в товарообороте (%), – уровень рентабельности (%).
1.
Таким образом, по результатам регрессионного анализа, регрессионное уравнение будет иметь вид: у = 1,34х, где х – удельный вес продовольственных товаров в товарообороте (%), у – уровень рентабельности (%)
2.
В этом случае регрессионное уравнение будет иметь вид: у = 1,47 + 1,22х.
Проведём дисперсионный анализ
На основе результатов дисперсионного анализа при уровне значимости в 5% можно принять альтернативную гипотезу, т.е. можно утверждать, что уравнение регрессии адекватно отражает зависимость между переменными.