Лабораторная работа: Определение напряжений в элементах конструкций электротензометрированием
Отчет по лабораторной работе «Определение напряжений в элементах конструкций электротензометрированием»
Цель работы: изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений.
Экспериментальное определение напряжений проводится при создании, сдаче в эксплуатацию или после определенного срока работы ответственных конструкций с целью оценки их прочности. Устройства, преобразующие механические величины в электрические, называются датчиками (деформации -(тензорезистор), линейных или угловых перемещений, давлений, усилий, скоростей, ускорений).
Тензорезистор (рис. 9.4) представляет собой плоскую петлеобразную спираль 1 из тонкой (0,01...0,03 мм) константановой (60 % меди и 40 % никеля) проволоки, вклеенной между двумя слоями рисовой бумаги 2. Рабочий тензорезистор наклеивается (клей БФ) на деталь и при ее нагружении деформируется совместно. При статическом нагружении рабочие тензорезисторы подключаются к измерителю деформации (цифровому) ИДЦ, электрическая схема которого (рис. 9.5) представляет собой высокочувстви-тельный измерительный четырехплечий мост Ч.Уитстона(1844).
Рис. 9.5. Электрическая схема ИДЦ
Постановка работы. На экспериментальной установке (рис. 9.6) проведены испытания ЭК в виде стальной (Е = 2 * 105 МПа; µ = 0,3) трубы ( D = 60 мм; d = 54 мм; L = 360 мм; l = 300 мм) при плоском изгибе, кручении и совместном изгибе с кручением с записью (табл. 9.3) ступеней рабочей нагрузки Р и показаний т измерителя деформаций цифрового ИДЦ (цена деления β= 10-5 1/дел.).
Рис. 9.6. Схема экспериментальной установки: 1- элемент конструкции; 2 - опора; 3 - коромысло; 4, 5 - грузы; 6 -блок; 7-прямоугольная розетка тензорезисторов; I, II, III - рабочие тензорезисторы
№ступени нагружения |
Р, кН |
ΔР, кН | Изгиб | Кручение | Изгиб с кручением | |||||||
m1 | Δ m1 | m11 | Δ m11 | m1 | Δ m1 | m11 | Δ m11 | m111 | Δ m111 | |||
0 | 0.9 | - | 23 | - | 25 | - | 22 | - | 20 | - | -7 | - |
1 | 1.8 | 0.9 | 45 | 22 | 49 | 24 | 45 | 23 | 39 | 19 | -14 | -7 |
2 | 2.7 | 0.9 | 67 | 22 | 74 | 25 | 67 | 22 | 61 | 22 | -22 | -8 |
3 | 3.6 | 0.9 | 89 | 22 | 99 | 25 | 89 | 22 | 81 | 20 | -28 | -6 |
4 | 4.5 | 0.9 | 113 | 24 | 124 | 25 | 111 | 22 | 100 | 19 | -34 | -6 |
Δ Pср=0,9 | Δ m1 ср =22,5 | Δ m1 1ср =24,75 | Δ m1 ср =22,25 | Δ m1 1ср =20 | Δ m1 11ср =-6,75 |
Требуется: определить расчетные и экспериментальные значения напряжений; вычислить отклонения расчетных от экспериментальных напряжений.
Проводим обработку экспериментальных данных табл. 9.3 и определяем
средние значения приращений нагрузки Δ P ср =∑ΔР/4 и показаний ИДЦ:
Δ m ср =∑Δm/4.
В дальнейшем все расчеты проводятся для одной ступени нагружения.
Опыт № 1. Определение напряжений при изгибе элемента конструкции
1. Вычисляем расчетное приращение напряжений в точке А при изгибе:
Δσ =
2. Рабочий тензорезистор I наклеен по направлению главной деформации Δε1 , и находится в условиях линейного напряженного состояния. Определяем экспериментальные приращения главной деформации и главного напряжения:
Δε1э =Δ1ср β=22,2*10-5 ; Δσэ =EΔε1э =2*10-5 =45 Мпа
3. Находим отклонение расчетных от эксперементальных напряжений:
δ=*100%=44,4*45/45*100%= -1,33
4. Для оценки прочности элемента конструкции определяем экспериментальное значение напряжений при максимальной нагрузке:
max σэ = Δσэ Pmax /ΔP=45*4.5/0.9=255МПа
--> ЧИТАТЬ ПОЛНОСТЬЮ <--