Лабораторная работа: Планирование машинного эксперимента с имитационной моделью системы массового обслуживания
где i – номер фактора (i=1,n);
j – номер опыта (j=1,N ).
2. Условием нормировки, т.е. сумма квадратов элементов каждого столбца равна числу опытов:
ij 2 = N(i=1,n) (5 )
3.Ортогональностью, это означает, что сумма почленных произведений любых двух вектор- столбцов матрицы равна 0, т.е.
ij * хkj =0 (ik; i, k=1,n) (6 )
Данные свойства, особенно условие ортогональности, позволяют значительно упростить определение коэффициентов уравнения множественной регрессии. В этом случае оценки коэффициентов регрессионной модели можно вычислить по формуле:
ai =ij *yj /N(i=0,n) (7 )
А коэффициенты парных взаимодействий соответственно по формуле:
aik =ij *xkj *yj /N (ik; i, k=1,n) (8)
Количество испытаний в ПФЭ значительно превосходит число определяемых коэффициентов линейной модели плана эксперимента, т.е. ПФЭ обладает большой избыточностью и поэтому возникает проблема сокращения числа опытов. В связи с этим используется дробный факторный эксперимент (ДФЭ), который представляет часть полного факторного эксперимента. Матрица планирования для дробного факторного эксперимента называется дробной репликой. Различают регулярные и нерегулярные дробные реплики.
Регулярные реплики образуются из ПФЭ 2n делением пополам, на четыре части, восемь частей ит.д., т.е. на число кратное 2. Они называются соответственно: полурепликой, четверть- репликой, - реплики и т.д.. ДФЭ обозначается как 2n - k , где
k – кратность деления ПФЭ 2n на части 2k . Например, ДФЭ типа 4-2 означает, что ПФЭ из N=24 =16 делится на 22 =4 и получается план эксперимента, состоящий из N=24-2 =4 опытов.
Если регулярные реплики умножить на нечетные числа, больше единицы, то получаются нерегулярные реплики. Как например, реплики, реплики, реплики и т.д. являются нерегулярными.
Использование ДФЭ позволяет значительно сократить количество экспериментов и тем самым сэкономить ресурсы ЭВМ.
2.2 Пример планирования машинного эксперимента для модели СМО
Пусть необходимо провести машинный эксперимент по определению функциональной зависимости среднего времени ожидания заявки в очереди (ож ) от факторов: интенсивность поступления заявок λ, интенсивности обслуживания μ и емкости буфера L для однофазной одноканальной системы массового обслуживания со следующими параметрами: интенсивность поступления заявок λ=155; интенсивность обслуживания μ=105; количество мест в очереди L=102.
Для определения заданной зависимости представим математическую модель системы в виде:
y= a0 +a1 x1 +a2 x2 +a3 x3 , (9)
x1 = λ ; x2 = μ; x3 = L ; y=ож
Так как порядок модели n=3, то матрица планирования для полного факторного эксперимента примет вид (Таблица 2).
Таблица 2. Матрица планирования для модели СМО
Номер опыта | х0 | х1 | х2 | х3 | y |
1 | +1 | -1 | -1 | -1 | |
2 | +1 | +1 | -1 | -1 | |
3 | +1 | -1 | +1 | -1 | |
4 | +1 | +1 | +1 | -1 | |
5 | +1 | -1 | -1 | +1 | |
6 | +1 | +1 | -1 | +1 | |
7 | +1 | -1 | +1 | +1 | |
8 | +1 | +1 | +1 | +1 |
При этом следует помнить, что кодированные значения факторов соответствуют -1 нижнему уровню фактора, а +1 верхнему уровню фактора:
· для интенсивности поступления заявок λ нижний уровень равен λk =10 , а верхний λb =20;
· для интенсивности обслуживания μ нижний уровень равен μk =5, а верхний 15 μb ;
· для количества мест в очереди L нижний уровень Lk =8и верхний Lb =12
Поэтому при моделировании этих уровней факторов в блоке управления необходимо организовать их изменения. Это можно сделать путем введения нуля циклов. Тогда блок- схема управления вариантами моделирования примет вид (Рис1)
Рис1. Блок- схема управления вариантами моделирования
Для определения среднего времени ожидания ож можно воспользоваться блок- схемой Рис лабораторной работы 3. Результаты моделирования заносятся в Таблицу 2 в колонку для y.