Лабораторная работа: Расчёт зоны плавления
Тb=235 o C, - температура корпуса; Tm=140 o C, - температура плавления полимера.
Краткие теоретические сведения
Для математического описания процессов движения и плавления в канале пластицирующего экструдера возможно использовать различные подходы, основанные на тех или иных упрощающих предположениях. Наиболее простой математической моделью процесса плавления является модель З.Тадмора, позволяющая в одномерной постановке определить зависимость длины зоны плавления от различных технологических, геометрических характеристик и свойств перерабатываемого материала.
Допущения модели Тадмора:
1) кривизной канала пренебрегаем;
2) процесс стационарный;
3) расплав является ньютоновской жидкостью;
4) в целом задача одномерная;
5) характеристики материала постоянны;
6) пробка гранул имеет прямоугольную форму;
7) плавление происходит только у внутренней поверхности корпуса;
8) температура пробки гранул изменяется только по высоте канала;
Представление процессов движения и теплообмена полимеров основывается на законах сохранения массы, количества движения и энергии.
Главной задачей исследования является нахождение длины зоны плавления, которая определяется длиной канала, где ширина твердой фазы обращается в нуль.
Обозначим ширину пробки гранул через X , получим зависимость X = X ( z ) , т. е. изменение ширины пробки по длине канала. Выделим из пробки гранул элементарный объем. На рис. 3 представлен элементарный фрагмент пробки и распределение температуры в поперечном сечении канала
Рис. 3. Элементарный объём пробки гранул и температурный профиль пробки гранул
(1)
(2)
Где Vb – окружная скорость; Vbz – компонента окружной скорости в направлении оси z ; Vbx – компонента окружной скорости в направлении оси x ; Vsz – скорость пробки вдоль оси z ; Vsy – скорость пробки вдоль оси y ; Tb – температура корпуса; Ts – температура загружаемого материала.
Пробка гранул движется с локальной скоростью Vsz , направленной вдоль канала червяка. Скорость твердой пробки относительно поверхности (относительная скорость v j ) цилиндра находится как:
(3)
Введение относительной скорости Vj позволяет упростить задачу (в частности, это касается граничных условий).
Гидродинамика расплава, с учетом указанных ранее допущений, описывается следующими уравнениями движения и граничными условиями:
(4)
(5)
Интегрируя уравнение (4) с учетом (5), получим изменение скорости расплава в пленке в зависимости от координаты y по высоте:
(6)
Рассмотрим уравнение энергии для жидкой фазы в пленке толщиной d :