Лабораторная работа: Расчёт зоны загрузки
Краткие теоретические сведения
Большинство экструдеров, применяемых в промышленности переработки пластмасс, являются пластицирующими, т.е. полимер загружают в них в виде гранул. Гранулы перемещаются в загрузочной воронке под действием сил тяжести и заполняют канал червяка, в котором они транспортируются и сжимаются за счет сил трения, затем плавятся или пластицируются под действием сил трения.
Таким образом, процесс экструзии включает в себя четыре элементарных стадии, разделенные по зонам: загрузки, задержки плавления, плавления и дозирования.
Рассмотрим зону загрузки. Твердый материал в канале зоны загрузки продвигается вдоль канала за счет сил трения, возникающих между полимером и цилиндрическим корпусом.
Материал, захваченный цилиндрической поверхностью, наталкивается на встречающий гребень шнека и продвигается по винтовому каналу.
Сила трения пропорциональна нормально действующей силе на поверхность, не зависимо от площади контакта:
Сила трения обусловлена двумя факторами: адгезией (преодоление взаимодействия между молекулами) и пропахиванием частиц одного материала по другому.
Зависимость между нормально действующей силой и силой трения не всегда линейна, т.к. коэффициент трения может зависеть от температуры и давления.
Рассмотрим модель движения пробки по каналу зоны загрузки, представленную на рис.1. Здесь: верхняя пластина (цилиндрическая поверхность корпуса) движется с постоянной скоростью V0, Р – давление в канале, Sa и Sb – площади верхней и нижней пластины
Рис.1. Упрощенная модель движения пробки в канале зоны загрузки
Пробка гранул будет перемещаться за счет подвижной границы, если коэффициенты трения между гранулятом и цилиндром, а также гранулятом и червяком реализуются Различными, а именно равными 0.5 и 0.25 соответственно.
Сущность расчета процессов переноса в зоне загрузки заключается в определении изменения температуры и давления по длине зоны и длины зоны загрузки.
Разворачиваем канал на плоскость, используем принцип обращенного движения. Выделим в пробке гранул элементарный объем, рис 2
Рис.2. Силы, действующие на элементарный объём.
Спроектируем все силы, действующие на элемент на ось z:
; (1)
; ; (2)
;.(3)
где F1 – сила трения на боковых поверхностях;
F2 – сила трения на дне элемента;
Fb – сила трения на внутренней цилиндрической поверхности корпуса;
f1 и f2 – коэффициенты трения на шнеке и цилиндре соответственно.
Подставим выражения (2),(3) в (1):
(4)
;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--