Лабораторная работа: Решение нелинейных уравнений

Задание

N =07

М=2

Дано уравнение:

1. Найти все решения уравнения графически.

2. Уточнить значение одного из действительных решений уравнения с точностью до

e= 0,001:

2.1. *методом половинного деления;

2.2. *методом Ньютона - Рафсона;

2.3. методом секущих;

2.4. конечно-разностным методом Ньютона;

2.5. *методом простой итерации;

2.6. *методом хорд и касательных

2.7. комбинированным методом Ньютона.

3. Результаты расчетов оформить таблично с кратким описанием каждого использованного метода: расчетные формулы, выбор начального приближения, критерий остановки и пр.

4. Из методов пункта 2 задание на лабораторную работу предусматривает обязательное использование 4-х методов, отмеченных звездочками, и одного из остальных методов по усмотрению студента.

нелинейный уравнение графический ньютон итерация


1. Решение уравнения графически:

2. Метод половинного деления

Расчетная формула: следующее значение x получается делением отрезка пополам.

Начальное приближение:

Критерий остановки: <2; .

Таблица результатов

Метод половинного деления
k ak bk xk f(ak ) f(bk ) f(xk ) |bk -ak | f(xk )*f(ak ) f(xk )*f(bk ) |bk -ak |<2ε
0 0 1,5 0,75 -2,070 4,305 -0,148 1,5 0,306360 -1,000000 -
1 0,75 1,5 1,125 -0,148 4,305 1,604 0,75 -0,237392 6,905220 -
2 0,75 1,125 0,938 -0,148 1,604 0,631 0,375 -0,093388 1,012120 -
3 0,75 0,938 0,844 -0,148 0,631 0,219 0,188 -0,032412 0,138190 -
4 0,75 0,844 0,797 -0,148 0,219 0,03 0,094 -0,004440 0,006570 -
5 0,75 0,797 0,774 -0,148 0,03 -0,058 0,047 0,008584 -0,001740 -
6 0,774 0,797 0,786 -0,058 0,03 -0,012 0,023 0,000696 -0,000360 -
7 0,786 0,797 0,792 -0,012 0,03 0,011 0,011 -0,000132 0,000330 -
8 0,786 0,792 0,789 -0,012 0,011 -0,001 0,006 0,000012 -0,000010 -
9 0,789 0,792 0,791 -0,001 0,011 0,007 0,003 -0,000007 0,000080 -
10 0,789 0,791 0,790 -0,001 0,007 0,003 0,002 -0,000003 0,000020 -
11 0,789 0,790 0,790 -0,001 0,003 0,003 0,001 +

3. Метод Ньютона – Рафсона

Расчетная формула: , где

Начальное приближение:.

Критерий остановки: |f(xk+1 )-f(xk )|<ε; .

Таблица результатов:

Метод Ньютона – Рафсона
k xk f(xk ) f'(xk ) |f(xk+1 )-f(xk )|<ε
0 0,75 -0,1481 3,688 -
1 0,79 0,003 3,872 -
2 0,789 -0,0008 3,868 +

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 134
Бесплатно скачать Лабораторная работа: Решение нелинейных уравнений