Лабораторная работа: Ветвящиеся циклические процессы
Содержание:
Введение. 3
Теория. 4
Практика. 10
Выводы.. 12
Список использованной литературы.. 13
Введение
Случайные процессы в реальной финансово–экономической практике редко бывают марковскими, поскольку на протекание процесса в будущем влияет не только его состояние в текущий момент времени, но и то, как он протекал в прошлом.
Но, тем не менее, использование приближённых моделей на практике позволяет достаточно точно (с определённой точностью) оценивать различные системы. В данной теоретико-практической работе будет рассмотрена теория о ветвящихся циклических процессах, с помощью которой можно предсказывать состояние исследуемой системы в будущем через достаточно длительный промежуток времени.
В процессе данной работы я рассмотрю основные положения теории о ветвящихся циклических процессах; приведу пример задачи, с которой можно столкнуться в реальной жизни, и её решение с помощью рассматриваемой теории.
Теория
Введём основные понятия, с которыми нам предстоит работать. Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если эта система с течением времени t изменяет свои состояния S(t) (всего возможных состояний системы n штук) случайным образом, при чём так, что для каждого момента времени вероятность состояния S(t) системы S в будущем () зависит только от её состояния S() в настоящем и не зависит от того, как и сколько времени развивался этот процесс в прошлом (), то говорят, что в системе S протекает марковский случайный процесс.
Процесс является процессом с непрерывным временем, если в нём система может менять свои состояния в любой случайный момент времени.
Плотностью вероятности перехода системы S из состояния в состояние в момент времени t называется величина
Если же плотности вероятностей переходов не зависят от времени t, то такой процесс называется однородным.
Марковский процесс, протекающий в системе S с n состояниями, называется ветвящимся циклическим процессом, если его граф состояний имеет вид:
Теорема:
Пусть в системе S протекает ветвящийся циклический однородный марковский процесс с непрерывным временем, причём возможный непосредственный переход из состояния разветвляется на переходы в состояния соответственно с вероятностями , сумма которых равна 1:
(1)
Переходы из состояний сходятся в состояние .
Тогда финальные вероятности[1] соответствующих состояний системы S определяются следующими формулами:
где .
Доказательство:
Т.к. ветвящийся циклический процесс можно представить в виде обычного циклического процесса и собственно разветвления, то, учитывая свойство циклического процесса, что плотность вероятности перехода из неразветвлённого состояния в соседнее справа равна обратной величине среднего времени пребывания (подряд) системы S в состоянии , имеем
(2)
Интенсивность потока уходов из состояния равна , где— среднее время пребывания (подряд) системы S в состоянии . Тогда будет представлять собой долю величины , определенную вероятностью qm , m + k :
(3)
Составим по графу (на рис. 1) систему линейных алгебраических уравнений, неизвестными в которой являются финальные вероятности :
(4)
Подставляя 2 и 3 в 4, получим:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--