Лабораторная работа: Временные ряды в эконометрических исследованиях
Рисунок 1 – стоимость ОПФ, млн. руб. (фактические, выровненные и полученные по аддитивной модели значения уровней ряда)
Для оценки качества построенной модели или для выбора наилучшей модели используется ошибка е.
Следовательно, можно сказать, что аддитивная модель объясняет 76,1% общей вариации временного ряда.
Построение мультипликативной модели временного ряда
Таблица 10
Расчет оценок сезонной компоненты в мультипликативной модели
t | Yt | итого за 4 квартала | скольз. сред. | Центр скол. сред | оценка сезонной компоненты |
1 | 898 | - | - | - | - |
2 | 794 | 4733 | 1183,25 | - | - |
3 | 1441 | 4802 | 1200,5 | 1191,875 | 1,21 |
4 | 1600 | 5254 | 1313,5 | 1257 | 1,27 |
5 | 967 | 5271 | 1317,75 | 1315,625 | 0,74 |
6 | 1246 | 5083 | 1270,75 | 1294,25 | 0,96 |
7 | 1458 | 5007 | 1251,75 | 1261,25 | 1,16 |
8 | 1412 | 4822 | 1205,5 | 1228,625 | 1,15 |
9 | 891 | 4651 | 1162,75 | 1184,125 | 0,75 |
10 | 1061 | 4874 | 1218,5 | 1190,625 | 0,89 |
11 | 1287 | - | - | - | - |
12 | 1635 | - | - | - | - |
Таблица 11
Расчет сезонной компоненты в мультипликативной модели
показатели | год | 1 кв | 2 кв | 3 кв | 4 кв |
1 | - | - | 1,21 | 1,27 | |
2 | 0,74 | 0,96 | 1,16 | 1,15 | |
3 | 0,75 | 0,89 | - | - | |
итого за i кв | 1,49 | 1,85 | 2,37 | 2,42 | |
средняя оценка сезонной компоненты для i квартала, Sср | 0,745 | 0,925 | 1,185 | 1,21 | |
скорректированная сезонная компанента, Si | 0,73 | 0,91 | 1,17 | 1,19 |
Имеем:
0,745+0,925+1,185+1,21=4,07
Определим корректирующий коэффициент:
.
Проверим условие равенства 4 суммы значений сезонной компоненты:
Таблица 12
Расчет выровненных значений Ф и ошибок Е в мультипликативной модели
t | Yt | Si | T*E=Y/S | T | T*S | E=Yt/(T*S) | E^2 | (Yt-T*S)^2 |
1 | 898 | 0,73 | 1230,137 | 1183,465 | 863,9295 | 1,039437 | 1,0804287 | 1160,802377 |
2 | 794 | 0,91 | 872,5275 | 1190,5 | 1083,355 | 0,732908 | 0,5371548 | 83726,31603 |
3 | 1441 | 1,17 | 1231,624 | 1197,535 | 1401,116 | 1,028466 | 1,0577421 | 1590,737444 |
4 | 1600 | 1,19 | 1344,538 | 1204,57 | 1433,438 | 1,116197 | 1,2458965 | 27742,79991 |
5 | 967 | 0,73 | 1324,658 | 1211,605 | 884,4717 | 1,093308 | 1,1953226 | 6810,928554 |
6 | 1246 | 0,91 | 1369,231 | 1218,64 | 1108,962 | 1,123573 | 1,2624159 | 18779,30381 |
7 | 1458 | 1,17 | 1246,154 | 1225,675 | 1434,04 | 1,016708 | 1,0336956 | 574,0935801 |
8 | 1412 | 1,19 | 1186,555 | 1232,71 | 1466,925 | 0,962558 | 0,9265175 | 3016,74464 |
9 | 891 | 0,73 | 1220,548 | 1239,745 | 905,0139 | 0,984515 | 0,9692704 | 196,3879918 |
10 | 1061 | 0,91 | 1165,934 | 1246,78 | 1134,57 | 0,935156 | 0,8745171 | 5412,515472 |
11 | 1287 | 1,17 | 1100 | 1253,815 | 1466,964 | 0,877322 | 0,7696946 | 32386,87933 |
12 | 1635 | 1,19 | 1373,95 | 1260,85 | 1500,412 | 1,089701 | 1,1874484 | 18114,06433 |
итого | 14690 | 12 | 14665,85 | 14665,89 | 14683,2 | 11,99985 | 12,140104 | 199511,5735 |
Ср знач | 1224,17 |
Т=7,035t+1176,43
Рисунок 2 – стоимость ОПФ, млн. руб. (фактические, выровненные и полученные по мультипликативной модели значения уровней ряда)
Следовательно, ошибка е мультипликативной модели составит:
Таким образом, доля объясненной дисперсии уровней ряда в мультипликативной модели составит 79%
Прогнозирование
Для прогнозирования из двух рассмотренных моделей необходимо выбрать ту, у которой ошибка е наименьшая. Следовательно, при прогнозировании будет использоваться мультипликативная модель, так как
Таким образом, прогнозное значение уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент.
Объем товаров, выпущенного фирмой в течение первого полугодия ближайшего следующего, т. е. четвертого года, рассчитывается как сумма объемов выпущенных товаров в I и во II кварталах четвертого года, соответственно и . Для определения трендовой компоненты воспользуемся уравнением тренда:
Т=7,035t+1176,43
Получим: