Реферат: 5 различных задач по программированию
y2 = 5, x1= 5, W1 (5;5) = 52 + 2×5 + 2 +4×5 = 57
Значения функции состояния F1(x )представлены в табл. 1
Таблица 1
x = y2 0 1 2 3 4 5
F1 (x = y2)
2 11 18 29 42 57
x1(x=y2) 0 1 2 3 4 5
Переходим ко второму этапу. Полагаем k =2 и табулируем функцию F2(x = y3)
Здесь минимум берется по единственнойпеременной х2, которая может изменяться в
пределах
0 £ x2 £ d2 + y3 или 0 £ x2 £ 2 + y3
(1)
где верхняя граница зависит от параметрасостояния x = у3, который
принимаетзначения на отрезке
0 £ y3 £ d3 , т.е. 0 £ y3 £ 3
а аргумент у2 связан с х2 и у3 балансовымуравнением x2 + y2 - d2 = y3
откуда следует y2 = y3 + d2 - x2 = =y3 +2 - x2 (2)
Придавая параметру состояния различныезначения от 0 до 3, будем последовательно
вычислять W2 (x2, x), а затем определять F2(x ) и 2(x ).
Положим x = у3 = 0. Тогда, согласно(1), 0 £ x2 £ 2, т.е.переменная х2 может
принимать значения: 0, 1, 2, а каждому значению х2 отвечаетопределенное значение
у2, вычисляемое по формуле (2): у2 = 2 - х2
Последовательно находим:
если x2 = 0, то у2 = 2 , W2 (0,2) = 02 + 2×0 + 2+
F1(2) = 2 + 18 = 20,
x2 = 1, y2 = 2 - 1 = 1, W2 (1,2) = 12 + 5×1 + 2 + F1(1) = 8 +
11 = 19,
x2 = 2, y2 = 2 - 2 =0, W2(2,2) = 22 + 5×2 + 2 + F1(0) = 16+ 2 = 18*,
Наименьшее из полученных значений W2 есть F2 (0), т.е.