Реферат: Аксиоматика теории множеств
Назовем класс множеством, если он является элементом какого-нибудь класса. Класс, не являющийся множеством, назовем собственным классом.
Определение. M(X) служит сокращением для Y(XY) (X есть множество).
Определение. Pr(X) служит сокращением для M(X) (X есть собственный класс).
В дальнейшем увидим, что обычные способы вывода парадоксов приводят теперь уже не к противоречию, а всего лишь к результату, состоящему в том, что некоторые классы не являются множествами. Множества предназначены быть теми надежными, удобными классами, которыми математики пользуются в своей повседневной деятельности; в то время как собственные классы мыслятся как чудовищно необъятные собрания, которые, если позволить им быть множествами (т. е. быть элементами других классов), порождают противоречия.
Система NBG задумана как теория, трактующая о классах, а не о предметах. Мотивом в пользу этого послужило то обстоятельство, что математика не нуждается в объектах, не являющихся классами, вроде коров или молекул. Все математические объекты и отношения могут быть выражены в терминах одних только классов. Если же ради приложений в других науках возникает необходимость привлечения «неклассов», то незначительная модификация системы NBG позволяет применить ее равным образом как к классам, так и к «неклассам» (Мостовский [1939]).
Мы введем строчные латинские буквы x1, x2, … в качестве специальных, ограниченных множествами, переменных. Иными словами, x1 A (x1) будет служить сокращением для X (M(X)A (X)) , что содержательно имеет следующий смысл: «A истинно для всех множества, и x1 A (x1) будет служить сокращением для X (M(X)A (X)), что содержательно имеет смысл: «A истинно для некоторого множества». Заметим, что употребленная в этом определении переменная X должна быть отличной от переменных, входящих в A (x1). (Как и обычно, буквы х, y, z, ... будут употребляться для обозначения произвольных переменных для множеств.)
П р и м е р. Выражение ХхyZA (X, х, y, Z) служит сокращением для
ХXj (М(Xj)Y(M(Y)&ZA (X, Xj, Y, Z))).
А к с и о м а Т. (Аксиома объемности.) Х = Y (XZYZ).
Предложение 2. Система NBG является теорией первого порядка с равенством.
А к с и о м а Р. (Аксиома пары.) xyzu (u z u = xu = y), т. е. для любых множеств х и у существует множество z такое, что х и у являются единственными его элементами.
А к с и о м а N. (Аксиома пустого множества.) х y (у х), т. е. существует множество, не содержащее никаких элементов.
Из аксиомы N и аксиомы объемности следует, что существует лишь единственное множество, не содержащее никаких элементов, т. е.
1x y (у х). Поэтому мы можем ввести предметную константу 0, подчиняв ее следующему условию.
Определение. y (y 0).
Так как выполнено условие единственности для неупорядоченной пары, то можем ввести новую функциональную букву g(х, y) для обозначения неупорядоченной пары х и у. Впрочем вместо g(х, y) мы будем писать {х, у}. Заметим, что можно однозначно определить пару {X, Y} для любых двух классов Х и Y, а не только для множеств х и у. Положим {X, Y} = 0, если один из классов X, Y не является множеством. Можно доказать, что
NBG 1Z((M(X)&M(Y)&u (u Z u = X u = Y))
(( M(X) M(Y))&Z=0)).
Этим оправдано введение пары {X, Y}:
Определение. (М(Х) & М(Y) & u (и {X, Y} u = X u = Y))
(( M(X) M(Y)) & {X, Y} = 0).
Можно доказать, что NBG x y u (u {х, у} u = x u = y) и NBG x y (M({х, у})).
Определение. = {{Х}, {X, Y}}. называется упорядоченной парой классов Х и Y.
Никакого внутреннего интуитивного смысла это определение не имеет. Оно является лишь некоторым удобным способом (его предложил Ку-ратовский) определить упорядоченные пары таким образом, чтобы можно было доказать следующее предложение, выражающее характеристическое свойство упорядоченных пар.
Предложение 3.
NBG x y u v ().
Доказательство. Пусть = . Это значит, что {{x}, {x, y}} = {{u}, {u, v}}. Так как {х} {{x}, {x, y}}, то {x} {{u}, {u, v}}. Поэтому {x} = ={u} или {х} = {u, v}. В обоих случаях х = и. С другой стороны, {u, v} {{u}, {u, v}} и, следовательно, {u, v} {{x}, {x, y}}. Отсюда {u, v} = {x} или {u, v} = ={x, y}. Подобным же образом {x, y} = {u} или {х, у}={и, v}. Если или {u, v} = ={x} и {х, y} = {u}, то х = и = у = v, в противном случае {и, v} = {х, у} и, следовательно, {и, v} = {u, у}. Если при этом v ≠ u, то y = v, если же v = u, то тоже y = v. Итак, в любом случае, y = v.
Мы теперь обобщим понятие упорядоченной пары до понятия упорядоченной n-ки.
Определение