Реферат: Аксиоматика теории множеств

Предложение 4. Пусть φ (X1,…,Xn, Y1,…, Ym) – формула, перемен­ные которой берутся лишь из числа X1,…,Xn, Y1,…, Ym . Назовём такую фор­мулу предикативной, если в ней связными являются только переменные для множеств (т.е. если она может быть приведена к такому виду с помощью принятых сокращений). Для всякой предикативной формулы φ (X1,…,Xn, Y1,…, Ym)

Zx1xn ( Z φ (x1,…,xn, Y1,…, Ym)).

Доказательство. Мы можем ограничиться рассмотрением только та­ких формул φ, которые не содержат подформул вида Yi W, так как всякая та­кая подформула может быть заменена на x (x = Yi & x W), что в свою оче­редь эквивалентно формуле x (z (z x z Yi) & x W). Можно также предполагать, что в φ не содержатся подфор­мулы вида XX, которые могут быть заменены на u (u = X & u X), последнее же эквивалентно u (z (z u z X) & u X). Доказа­тельство проведем теперь индук­цией по числу k логических связок и кванторов, входящих в формулу φ (за­писанную с ограниченными пере­менными для множеств).

1. Пусть k = 0. Формула φ имеет вид xi xj, или xj xi, или xi Yi, где 1 ≤ i < jn. В первом случае, по аксиоме В1, сущест­вует некоторый класс W1 такой, что

xixj (W1 xi xj).

Во втором случае, по той же аксиоме, существует класс W2 такой, что

xixj (W2 xj xi),

и тогда, в силу

XZ u v ( Z X),

существует класс W3 такой, что

xixj (W3 xj xi).

Итак, в любом из первых двух случаев существует класс W3 такой, что

xixj (W φ (x1,…,xn, Y1,…, Ym)).

Тогда, заменив в

XZ v1vkuw ( Z X)

X на W, получим, что существует некоторый класс Z1 такой, что

x1 xi-1xixj (Z1 φ (x1,…,xn, Y1,…, Ym)).

Далее, на основании

XZ v1vmx1xn (

ZX)

там же при Z1 = X, заключаем, что существует класс Z2 такой, что

x1 xi xi+1 xj ( Z2 φ (x1,…,xn, Y1,…, Ym)).

Наконец, применяя


XZ v1vmx1xn ( Z X)

(1)

там же при Z2 = Х, получаем, что существует класс Z такой, что

x1xn ( Z φ (x1,…,xn, Y1,…, Ym)).

Для остающегося случая xi Yi теорема следует из (1) и

XZ x v1vm ( Z x X).

К-во Просмотров: 504
Бесплатно скачать Реферат: Аксиоматика теории множеств