Реферат: Алгебра матриц
Следует обратить внимание на то, что алгебраические дополнения к элементам i-ой строки матрицы А стоят в i-ом столбце матрицы А* , для .
Найдем произведения матриц АА* и А* А. Обозначим АА* через С, тогда по определению произведения матриц имеем: Сij = аi 1 А 1 j + аi 2 А 2 j + … + аin Аnj ; i = 1, n: j = 1, n.
При i = j получим сумму произведений элементов i - ой строки на алгебраические дополнения этой же строки, такая сумма равняется значению определителя. Таким образом Сij = |А| = D - это элементы главной диагонали матрицы С. При ij, т.е. для элементов Сij вне главной диагонали матрицы С, имеем сумму произведений всех элементов некоторой строки на алгебраические дополнения другой строки, такая сумма равняется нулю. Итак, = АА*
Аналогично доказывается, что произведение А на А* равно той же матрице С. Таким образом, имеем А* А = АА* = С. Отсюда следует, что
Поэтому, если в качестве обратной матрицы взять , то Итак, обратная матрица существует и имеет вид:
.
Пример. Найдем матрицу, обратную к данной:
Находим D = |А| = -1 ¹ 0, А существует. Далее находим алгебраические дополнения элементов матрицы А:
А = = 0 ; А = = -1; А = = 3;
А = = -3; А = = 3; А = = -4;
А = = 1; А = = -1; А = = 1;
А =