Реферат: Алгебраические числа
Таким образом, минимальным многочленом для z называется многочлен наименьшей степени с рациональными коэффициентами и старшим коэффициентом, равном единице, корнем которого является z.
Если вместо многочлена (1) взять какой-либо другой многочлен с рациональными коэффициентами степени n, корнем которого является z, то многочлен (1) может быть получен из него делением всех коэффициентов на старший член.
Пример:
Минимальным многочленом для является x3-2, так как корень этого многочлена не является корнем какого-либо многочлена степени с рациональными коэффициентами.
Теорема 1: Если f(x) минимальный многочлен алгебраического числа z и f(x) многочлен с рациональными коэффициентами, такой, что F(z)=0, то f(x) делитель F(x), т.е. F(x)=f(x)g(x), где g(x) также многочлен с рациональными коэффициентами.
Доказательство: Согласно известной теореме алгебры F(x) можно представить в виде:
F(x)=f(x)g(x)+r(x)
где g(x) и к(ч) – многочлены с рациональными коэффициентами, причем степень r(x) меньше степени f(x). Поскольку F(x)=0 и f(z)=0, то придавая x значение z, получаем r(z)=0; z – корень многочлена r(x) с рациональными коэффициентами степени, меньшей чем у минимального для z многочлена, т.е. меньшей чем степень z. Это может быть только если r(x) тождественно равен нулю, а значит F(x)=f(x)g(x). Теорема доказана.
Теорема 2: Для любого алгебраического числа z минимальный многочлен неприводим над полем рациональных чисел.
Доказательство:
Пусть f(x) – минимальный многочлен для z. Предположим, что f(x) приводим над полем рациональных чисел, т.е., что f(x)=w(x)j(x), w(x)j(x) – многочлены с рациональными коэффициентами, степени меньшей, чем n.
Из равенства w(x)j(x)=f(x)=0 следует, что из двух чисел w(x) и j(x), по крайней мере одно равно нулю. Пусть например w(x)=0, тогда z – корень тождественно не равного нулю многочлена w(x) с рациональными коэффициентами, степени меньшей, чем n, т.е. меньшей чем у f(x). А это противоречит тому, что f(x) – минимальный многочлен для z. Предположение, что f(x) приводим над полем рациональных чисел, оказалось неверным, т.е. f(x) неприводим над этим полем. Теорема доказана.
Теорема 3: Если z корень неприводимого над полем рациональных чисел многочлена F(x) с рациональными коэффициентами степени n, то z – алгебраическое число степени n.
Доказательство:
Обозначим минимальный многочлен для z через f(x). Согласно теоремы 1: F(x)=f(x)g(x); где g(x) – многочлен с рациональными коэффициентами. Поскольку F(x) неприводим над полем рациональных чисел и f(x) отлично от постоянного, то g(x)=c, где c – рационально. F(x)=cf(x), т.е. z – алгебраическое число n-й степени. Теорема доказана.
Пример:
Пусть p – простое число.
при любом простом целом a (a>1), не равном p-ой степени другого целого, представляет собой алгебраическое число степени p. Действительно это число есть корень неприводимого над полем рациональных чисел многочлена.
xp-a=0
Если z – алгебраическое число степени n и f(x) – минимальный многочлен для z, то все корни z1, z2, … zn уравнения f(x)=0, отличные от z, называют сопряженным с z.
Один из корней совпадает с z, будем ставить его на первое место, т.е. z=z1.
2.3. Поле алгебраических чисел
Теорема 4: Множество всех действительных алгебраических чисел представляет собой поле, т.е. сумма, разность, произведение и частное двух алгебраических чисел a и b (для частного при b¹0) являются алгебраическими числами.
Доказательство:
Пусть a - корень многочлена f(x) степени n с целыми коэффициентами, корни которого a1, a2, … ,an, a и b - корень многочлена j(x) степени m с целыми коэффициентами, корни которого b1, b2, … bm (b=b1). Рассмотрим многочлен:
F(x)=(x-(ai+bi))=
= (x-a1-b1) (x-a1-b2) … (x-a1-bm)
(x-a2-b1) (x-a2-b2) … (x-a2-bm)
- - - - - - - - - - - - - - - - - - - - - - - - - -
(x-an-b1) (x-an-b2) … (x-an-bm) (2)