Реферат: Алгебраические числа
Согласно известным теоремам о симметрических многочленах, коэффициенты многочлена F(x) могут быть выражены рационально через элементарные симметрические функции от a1, a2, … ,an и b1, b2, … bm, т.е. через целые коэффициенты, f(x) и j(x). Это значит, что коэффициенты F(x) рациональны, и, следовательно, число a+b=a1+b1, являющегося, как это непосредственно видно из формулы (2), корнем F(x), есть алгебраическое число.
Для доказательства того, что произведение двух алгебраических чисел a и b есть алгебраическое число, достаточно, аналогично тому, как это было только что сделано для многочлена (2), рассмотреть многочлен:
F(x)=(x-aibi) (3)
Этот многочлен имеет в качестве одного из своих корней a1b1=ab.
Пусть b - корень многочлена j(x)=b0xn+ b1xn-1+ … bn, (bi – целые числа). Тогда -b является корнем многочлена с целыми коэффициентами.
j(-x)=(-1)nb0xn+(-1)n-1b1xn-1+ … bn, а при b¹0 корень многочлена xnj()=b0+b1x+ … bnxn. Таким образом, вместе с b алгебраическими числами являются -b и .
Разность может быть представлена в виде a+(-b), т.е. в виде суммы двух алгебраических чисел. При b¹0 частное , являясь произведением двух алгебраических чисел, представляет собой так же алгебраическое число.
Если степени алгебраических чисел a и b равны m и n, то, взяв в качестве f(x) и j(x) соответствующие минимальные многочлены будем в (2) и (3) иметь многочлены степени mn, и ab алгебраические числа степени, не большей, чем mn. Многочлены j(x), j(-x), и xn одинаковой степени, а, следовательно, b, -b, - алгебраические числа одной и той же степени, откуда следует, что и a-b и имеют степени не больше, чем mn. Теорема доказана.
Пример:
1) и алгебраические числа 2-й степени, а - алгебраическое число 4 степени. Действительно, если a=, то a2=5+, 24-10a2+1=0, т.е. a корень многочлена f(x)=x4-10x2+1 с целыми коэффициентами, и f(x)=(x-)(x-)(x+)(x+) (4)
Из теоремы единственности над полем рациональных чисел множители f(x) должны являться произведением каких-то множителей правой части равенства (4). Легко видеть, что из этих множителей нельзя составить многочлен с рациональными коэффициентами степени меньшей, чем 4, т.е. f(x) – неприводимый над полем рациональных чисел многочлен, а, следовательно, согласно теореме 3, - алгебраическое число 4-й степени.
2) a= и b=, как легко видеть, это алгебраические числа 6-й степени, а произведение ab= - алгебраическое число 3-й степени.
III. Рациональные приближения алгебраических чисел.
3.1. Теорема Лиувилля.
Алгебраические числа не могут иметь слишком хороших рациональных приближений: погрешность при замене алгебраического числа рациональной дробью не может быть достаточно мала по порядку в сравнении с величиной, обратной знаменателю рациональной дроби.
Для алгебраического числа 1-й степени существует постоянная c>0, такая, что для любой рациональной дроби , отличной от a, будет выполняться неравенство:
(5)
Для алгебраического числа 2-й степени можно подобрать c>0, такое, что для любой рациональной дроби, будет иметь место неравенство:
(6)
В 1844 г., французским математиком Лиувиллем, впервые была доказана общая теорема:
Теорема 5: Для любого действительного алгебраического числа a степени n можно подобрать положительноеc, зависящее только от a, такое, что для всех рациональных чисел (¹a) будет иметь место неравенство:
(7)
Доказательство:
Пусть f(x)=A0xn+ A1xn-1+An неприводимый многочлен с целыми коэффициентами, корнем которого является a. В качестве f(x) можно, например, взять многочлен, получающийся из минимального для a многочлена после умножения всех коэффициентов на наименьшее кратное их знаменателей.
Согласно теореме Безу, имеем:
f(x)=(x-a)g(x), (8)
где g(x) – многочлен с действительными коэффициентами.
Возьмем произвольное d>0. |g(x)| - непрерывная, а следовательно, ограниченная функция от x в сегменте [a-d; a+d], т.е. существует положительное число M, такое, что |g(x)|£M, для всех x из этого сегмента. Обозначим через c=min , так, что и .
Для произвольного рационального числа могут представиться две возможности:
лежит вне сегмента |a-dm; a+dm|, тогда
удовлетворяет неравенствам: