Реферат: Алгоритм компактного хранения и решения СЛАУ высокого порядка

 2 МЕТОДЫ КОМПАКТНОГО ХРАНЕНИЯ МАТРИЦЫ ЖЕСТКОСТИ

Матрица жесткости, получающаяся при применении МКЭ, обладает симметричной структурой, что позволяет в общем случае хранить только верхнюю треугольную часть матрицы. Однако для задач с большим количеством неизвестных это так же приводит к проблеме нехватки памяти. Предлагаемый в данной работе метод, позволяет хранить только ненулевые члены матрицы жесткости. Суть его заключается в следующем.

Первоначально, с целью выявления связей каждого узла с другими, производится анализ структуры дискретизации области на КЭ. Например, для КЭ - сетки, изображенной на рис. 1, соответствующая структура связей будет иметь вид:

№ узла 1 2 3 4 5 6 7
Связи 1, 2, 5, 6, 7 1, 2, 3, 6 2, 3, 4, 6 3, 4, 5, 6, 7 1, 4, 5, 7 1, 2, 3, 4, 6, 7 1, 4, 5, 6, 7


Тогда, для хранения матрицы жесткости необходимо построчно запоминать информацию о коэффициентах, соответствующих  узлам, с которыми связан данный узел.  На рис. 2 приведены   матрица жесткости и ее компактное представление для сетки изображенной на рис 1 [9].


Текст подпрограммы, реализующий предложенный алгоритм анализа структуры КЭ-разбиения тела, приведен в Приложении 1.

Данный способ компактного хранения матрицы жесткости позволяет легко его использовать совместно с каким-нибудь численным методом. Наиболее удобным для этой цели представляется использование вышеизложенного итерационного метода Ланцоша, так как на каждой итерации требуется только перемножать матрицу коэффициентов СЛАУ и заданный вектор. Следовательно, для использования предложенного метода компактного хранения СЛАУ необходимо построить прямое и обратное преобразование в первоначальную квадратную матрицу.

Пусть – элемент первоначальной квадратной матрицы размерностью , а  - ее компактное представление. Тогда для обратного преобразования будут справедливы следующие соотношения:

,                                                                       (*)

где m – количество степеней свободы (m=1,2,3).

Для прямого преобразования будут справедливы соотношения, обратные к соотношениям (*).

 3 ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ

Для проверки предлагаемого метода компактного хранения матрицы жесткости была решена задача о контактном взаимодействии оболочечной конструкции и ложемента [12] (рис. 4).


Данная задача часто возникает на практике при транспортировке или хранении с горизонтальным расположением оси оболочечные конструкции устанавливаются на круговые опоры - ложементы. Взаимодействие подкрепленных оболочечных конструкций и ложементов осуществляется через опорные шпангоуты, протяженность которых вдоль оси оболочки соизмерима с шириной ложементов и много меньше радиуса оболочки и величины зоны контакта.

Данная задача решалась методом конечных элементов при помощи системы FORL [5]. Дискретная модель ложемента (в трехмерной постановке) представлена на Рис. 5.


При построении данной КЭ-модели было использовано 880 узлов и 2016 КЭ в форме тетраэдра. Полный размер матрицы жесткости для такой задачи составляет  байт, что приблизительно равно 2,7 Мбайт оперативной памяти. Размер упакованного представления составил около 315 Кбайт.

Данная задача решалась на ЭВМ с процессором Pentium 166  и 32 МБ ОЗУ двумя способами – методом Гаусса и методом Ланцоша. Сопоставление результатов решения приведено в Таблице 1.

   Таблица 1.

Время решения (сек)

Метод

Гаусса

280 2.2101 -2.4608 1.3756 -5.2501 1.7406 -2.3489
Метод Ланцоша 150 2.2137 -2.4669 1.3904 -5.2572 1.7433 -2.3883

Из Таблицы 1 легко видеть, что результаты решения СЛАУ методом Гаусса и методом Ланцоша хорошо согласуются между собой, при этом время решения вторым способом почти в два раза меньше, чем в случае использования метода Гаусса.

ВЫВОДЫ.

К-во Просмотров: 981
Бесплатно скачать Реферат: Алгоритм компактного хранения и решения СЛАУ высокого порядка