Реферат: Анализ линейной динамической цепи
Числитель:
Подставим все значения в формулу и поделим на p:
H41 (p)=
Преобразуем обратно Г1 =1/L1 и Г2 =1/L2
Подставим все значения элементов в формулу H41 (p),получаем:
Перейдем к нормированной частоте:
Для проверки и для того, чтобы удостовериться, что расчеты методом обобщенных чисел верны, воспользуемся результатом, полученным при использовании программы GeneralNumbers.vi
где .
Как мы видим, функция передачи, полученная методом обобщенных чисел, полностью совпадает с функцией передачи, рассчитанной с помощью программы GeneralNumbers.vi.
3. Карта полюсов и нулей
По ранее найденной комплексной функции передачи цепи определим полюса и нули:
Для нахождения нулей выпишем отдельно числитель функции и приравняем его к нулю. Корни данного уравнения и будут являться нулями.
=0
Решая данное уравнение, получим:
p1,2,3,4 =
Для нахождения полюсов выпишем отдельно знаменатель функции и приравняем его к нулю. Корни данного полинома и будут являться полюсами.
Решив данное уравнение, мы получили полюса:
p1,2 =-0.47751.3610j
p3,4 =-0.22960.6542j
Рис 3. Карта полюсов и нулей.
По полученным значениям построим карту полюсов и нулей:
По виду карты полюсов и нулей можно определить некоторые особенности цепи:
1. Цепь является минимально-фазовой, т.к. в правой полуплоскости отсутствуют нули.