Реферат: Анализ погрешностей волоконно-оптического гироскопа
где S - площадь всего контура.
Если относительное запаздывание встречных волн (1.8) возникающее при вращении, выразить через разность фаз встречных волн, то она составит
, (1.9)
где , .
Разность фаз является фазой Саньяка. Как видно, фаза Саньяка пропорциональна угловой скорости вращения контура.
Кинематическую теорию вихревого эффекта Саньяка ещё проще объяснить, рассматривая идеальный кольцевой оптический контур радиуса (рис 1.2.).
Рис 1.2. Эффект Саньяка в кольцевом оптическом контуре.
Луч света приходит в точку А и с помощью зеркал и расщепляется на два луча, один из которых распространяется по часовой стрелке в контуре, а другой - против часовой стрелки. С помощью этих же зеркал, после распространения в контуре лучи объединяются и направляются по одному, пути. При неподвижном контуре пути прохождения лучей одинаковы и равны
, (1.10)
, где с - скорость света, t - время прохождения периметра контура лучом.
Оба луча приходят в точку А на расщепитель в фазе. Если контур вращается с постоянной угловой скоростью W , то луч, распространяющийся по часовой стрелке, прежде чем попадет на перемещающийся расщепитель, пройдет путь
(1.11)
Это вызвано тем, что за время прохождения луча по замкнутому контуру расщепитель, находившийся ранее в точке А, уйдет в точку В. Для луча, распространяющегося против часовой стрелки, путь
(1.12)
Как видим, пути распространения противоположно бегущих лучей разные. Поскольку скорость света с величина постоянная, это эквивалентно разным временам прохождения лучей, распространяющихся в противоположных направлениях замкнутого вращающегося контура, и .
Разность времен распространения
(1.13)
В приближении первого порядка по можно записать
(1.14)
Что совпадает с выражением (1.8), полученным выше, если считать - площадь контура.
Эффект Саньяка может быть объяснен на основе понятия доплеровского сдвига частоты. Эффектом Доплера называется явление изменения частоты колебаний, излученных передатчиком и принимаемых приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника. При этом частота принятого колебания
, (1.15)
где f - частота излученного колебания, V - скорость перемещения передатчика, а знаки «+» или «-» соответствуют сближению или удалению передатчика относительно наблюдателя.
Доплеровский частотный сдвиг
пропорционален скорости перемещения излучателя.
Рассмотрим кольцевой оптический контур радиуса вращающийся с угловой скоростью W (рис. 1.3.). Аналогом перемещающегося излучателя в контуре является движущееся с линейной скоростью отражающее зеркало. При вращении контура встречно бегущие лучи имеют различные длины волн вследствие доплеровского сдвига , накапливаемого при отражении волны от зеркала, смещающегося со скоростью .
При вычислении фазы, накопленной в обоих плечах оптического контура, необходимо рассматривать вращающуюся систему в целом. Оба оптических пути тогда равны , но длины волн отличаются на доплеровский сдвиг . Тогда относительный фазовый сдвиг
(1.16)