Реферат: Анализ погрешностей волоконно-оптического гироскопа
В конфигурации, приведенной на рис 1.3., выходной ток фотодетектора повторяет изменения интенсивности (мощности) входного излучения, т.е.:
(1.26)
где h - квантовая эффективность фотодетектора; q - заряд электрона; h - постоянная Планка; f - частота оптического излучения.
Если пренебречь постоянной составляющей выходного тока, то на выходе фотодетектора получим сигнал
(1.27)
При введении невзаимного фазового сдвига p/2 и для малых значений выходной ток:
(1.28)
Таким образом, значения выходного тока пропорциональны фазе Саньяка, которая в свою очередь пропорциональна угловой скорости вращения контура W.
1.2. Принцип взаимности и регистрация фазы в ВОГ
В типичных экспериментальных конструкциях гироскопов используется катушка с R = 100 мм при длине волокна L = 500 м . Обнаружение скорости вращения в 1 град/ч требует регистрации фазы с разрешением порядка 10-5 рад. Это показано на рис. 1.4., где изображены значения фазового сдвига в функции угловой скорости вращения контура и величины LR при l = 0,63 мкм .
Оптические интерференционные системы фазовой регистрации с такой чувствительностью хорошо известны, однако в гироскопах существуют некоторые особые моменты, связанные с регистрацией фазы. Первый связан с тем фактом, что зачастую гироскоп работает с номинальной почти нулевой разностью хода, и для малых изменений в относительном значении фазы имеет место пренебрежимо малое изменение интенсивности на выходе.
Рис 1.4. Фаза Саньяка в угловой скорости вращения для различных значений параметра LR.
Работа при смещении фазы в 90° максимизирует чувствительность, однако это вносит некоторую невзаимность для двух направлений распространения лучей в гироскопе, т. к. фаза луча, распространяющегося по часовой стрелке, отличается от фазы луча, распространяющегося против часовой стрелки, в отсутствии вращения.
Свойство взаимности - это второй важный момент в ВОГ. Фазовая невзаимность в ВОГ определяется дифференциальной разностью фаз встречно бегущих лучей. Любая фазовая невзаимность (разность фаз) для двух направлений дает изменения в показаниях гироскопа. Если невзаимность является функцией времени, то имеет место некоторый временной дрейф в показаниях гироскопа. Волокно длиной 500 м дает фазовую задержку порядка 1010 рад. Таким образом, для того чтобы зарегистрировать скорость вращения 0,05 град/ч, нужно, чтобы пути распространения противоположно бегущих лучей согласовывались с относительной точностью до 10-17 рад.
Следует, кроме того, отметить, что сам принцип действия волоконного оптического гироскопа основан на невзаимном свойстве распространения встречных волн во вращающейся системе отсчета (появление разности фазовых набегов двух лучей при вращении). Поэтому несомненна важность анализа невзаимных эффектов и устройств в ВОГ (по меньшей мере, хотя бы для определения точности прибора).
Принцип взаимности хорошо иллюстрируется известной теоремой Лоренца для взаимных систем . Если характеризовать две электрод магнитные волны векторами , и ,, где - вектор напряженности электрического поля, а - вектор напряженности магнитного поля, то принцип взаимности выполняется для систем, у которых
(1.29)
где - антисимметричные тензоры магнитной и диэлектрической
проницаемостей материальной среды соответственно.
Условием невзаимности является неравенство нулю приведенного выше соотношения. К средам, проявляющим невзаимность, относятся магнитно-гиротропные материалы (ферромагнетики): электрически гиротропные среды (диамагнетики), находящиеся под действием магнитного поля; прозрачные диэлектрики; среды, совершающие поступательное движение относительно любой системы координат, в которой задано электромагнитное поле; вращающиеся среды; канализирующие системы типа волноводов и световодов. Последние случаи представляют особый интерес, поскольку при вращении ВОГ появляется фазовая невзаимность, дающая фазовую разность Саньяка.
При вращательном движении среды условие невзаимности имеет вид
(1.30)
Наличие канализирующей среды в ВОГ (световода) приводит к появлению ряда невзаимных эффектов, приводящих к появлению «паразитной» разности фаз встречно бегущих лучей. Эта паразитная разность фаз существенно искажает «полезную» фазу Саньяка, увеличивает значение надежно регистрируемой фазы Саньяка (т.е. ухудшает чувствительность прибора). Кроме того паразитная разность фаз, обусловленная невзаимными эффектами, носит зачастую характер случайных флуктуаций.
Исключение случайных флуктуаций может потребовать длительного накопления (интегрирования) выходного сигнала ВОГ, с тем чтобы выделить полезную составляющую (как показано в [1] в некоторых экспериментальных установках высокочувствительных ВОГ время интегрирования доходит до минут и даже до десятков минут).
Применительно к ВОГ анализ принципа взаимности удобно проводить для цепи с четырьмя входами и выходами . Для оптического волновода четыре входа соответствуют вводам излучения вдоль двух взаимно перпендикулярных направлений поляризации на каждом конце волокна. Соответствующие входы и выходы определяются вдоль идентичных поляризационных осей.
Отсюда следует, что в случае ввода излучения с исходным направлением поляризации Х свет, выходящий с ортогональным направлением поляризации У, будет обладать различными набегами фазы в каждом направлении распространения, а свет, выходящий с исходным направлением поляризации X, будет обладать одинаковыми набегами фазы для каждого направления распространения.
В этом часть требований, налагаемых интерпретацией теоремы взаимности Лоренца, которая постулирует, что в случае линейной системы оптические пути в точности взаимны, если данная входная пространственная мода оказывается такой же на выходе.
Одним из параметров пространственной моды является поляризация; второй параметр также должен быть определен, например пространственное распределение (расположение) моды. Следовательно, на конце контура ВОГ должны быть как поляризационный фильтр (селектирующий исходную поляризацию), так и пространственный фильтр, что будет удовлетворять принципу взаимности Лоренца .
Эти довольно простые устройства в конструкции ВОГ (при условии, что они могут быть реализованы с достаточной точностью) будут гарантировать условия взаимности в системе, но только в том случае, если выполняется условие линейности. Если же нелинейности значительны, то ВОГ будет обладать взаимностью в том случае, если имеется точная симметрия относительно средней точки волоконного контура. Это условие подразумевает, что энергия, вводимая в каждый конец контура, одинакова и что свойства волокна равномерно распределены (или по крайней мере симметричны).