Реферат: Анатомия и физиология человека 2
Введение
Анатомия и физиология относятся к биологическим наукам, они являются основными дисциплинами при теоретической и практической подготовке биологов и медицинских работников. В то же время каждый грамотный человек хотя бы в общих чертах должен знать о строении и основных функциях своего тела, своего организма и отдельных его органах. Такого рода знания могут оказаться весьма полезными, если в непредвиденных обстоятельствах потребуется оказать экстренную помощь пострадавшему. Поэтому уже в школьные годы, наряду с биологией - наукой о всем живом, изучаются анатомия и физиология человека как представителя животного мира, занимающего в нем особое место. Человек отличается от животного не только своим более совершенным строением, но и развитием мышления, наличием членораздельной речи, интеллектом, которые определяются комплексом социальных условий жизни, общественными взаимоотношениями, общественно- историческим опытом. Труд и социальная среда изменили биологические особенности человека.
Таким образом, анатомия и физиология являются частью биологии, как и человек - частью животного мира.
Анатомия человека – это наука о формах и строении, происхождении и развитии человеческого организма. Анатомия изучает внешние формы и пропорции тела человека, его частей, отдельные органы, их конструкцию, микроскопическое и ультрамикроскопическое строение. Анатомия рассматривает строение тела человека, его органов и различные периоды жизни, от внутриутробного периода и до старческого возраста, исследует особенности организма в условиях воздействия внешней среды.
Физиология изучает функции живого организма, его органов и систем, клеток и клеточных ассоциаций, процессы их жизнедеятельности. Физиология исследует функциональные взаимосвязи в теле человека в различные возрастные периоды и в условиях изменяющейся внешней среды.
Современная анатомия и физиология тщательно исследуют изменения и процессы, происходящие в организме человека в различные возрастные периоды.
Раскрывая основные закономерности развития человека в эмбриогенезе, а также детей в различные возрастные периоды, анатомия и физиология дают важный материал для педагогов, психологов, воспитателей и гигиенистов.
Эффективность воспитания и обучения находится в тесной зависимости от того, в какой мере учитываются анатомо-физиологические особенности детей и подростков. Особого внимания заслуживают периоды развития, для которых характерна наибольшая восприимчивость к воздействиям тех или иных факторов, а также периоды повышенной чувствительности и пониженной сопротивляемости организма.
Знания возрастных анатомо – физиологических особенностей необходимо при физическом воспитании, для определения эффективных методов обучения.
БЕЛКИ.
Белки– наиболее многочисленная группа органических веществ в животной клетке. На их долю приходится более половины сухого веса клетки. Белковые молекулы представляют собой цепи из остатков аминокислот (полипептидные цепи). Число аминокислот, входящих в состав белков, равно примерно 20. Существует множество вариантов последовательностей аминокислот в белковых молекулах, которые и определяют их разнообразие.
Классификация белков по их функциям.
Класс белков |
Локализация и функция |
Структурные | Компоненты соединительной ткани, костей, связок, сухожилий, хряща, кожи, ногтей, волос. |
Ферменты | Катализируют гидролиз и синтез белков, углеводов, липидов, нуклеиновых кислот. |
Гормоны | Регулируют обмен веществ, стимулируют рост и развитие. |
Транспортные | Переносят кислород, жирные кислоты, и т.д. |
Защитные | Участвуют в процессах свертывания крови и иммунных реакциях. |
Сократительные | Сокращение мышц. |
Запасные | Белки молока. |
Токсины | Вырабатываются болезнетворными бактериями в желудочно – кишечном тракте и других участках. |
ОБМЕН БЕЛКОВ.
Значение белкового обмена.
Белковый обмен – стержневой процесс среди многообразных превращений веществ, свойственных живой материи. С точки зрения материалистической диалектики само явление жизни в определенной степени представляет собой «способ существования белковых тел», которые непрерывно самообновляются, непрерывно строят себя из веществ окружающей среды. Поэтому в живой природе весь ход обмена веществ подчинен главной цели – воспроизведению белковых тел.
Все другие виды обмена – углеводный, липидный, нуклеиновый, минеральный и пр. – обслуживают обмен белков, специфический биосинтез белка. Одни группы процессов, как, например, углеводный обмен, являются в основном источников углеродных цепей в биосинтезе аминокислот – исходных соединений для новообразования белков. Другие, как, например, обмен жиров, главным образом поставляют вещества, при окислении которых макроэргических связях АТФ запасается энергия, необходимая для образования пептидных связей. Третьи (обмен нуклеиновых кислот) обеспечивают хранение и передачу информации о расположении кислотных остатков во вновь синтезируемых белковых молекулах, обслуживая специфическое воспроизведение уникальной структуры протеинов. Четвертые (минеральный обмен) способствуют становлению или распаду ферментных систем, при посредстве которых идет синтез белка, или созданию и разрушению субклеточных частиц и структур, на которых этот синтез осуществляется. Таким образом, многочисленные, разнообразные и часто очень сложные процессы превращения веществ и трансформации энергии в живом веществе обслуживают главным образом обмен белковых тел. Последний, в свою очередь, так регулирует упомянутые превращения, что создает оптимальные условия для своего собственного осуществления.
Важнейший вопрос при изучении белкового обмена – выяснение механизма специфического воспроизведения первичной структуры белковых веществ в процессе их биосинтеза. Как было отмечено ранее, первичная структура белка предопределяет характер третичной структуры белковых молекул, с которой связана та или иная функциональная их активность. Именно эта сторона белкового обмена имеет исключительное значение для жизнедеятельности организмов; именно она создает специфику обмена веществ у организмов разной степени сложности или уровня развития, именно со специфичностью белковых тел связана в первую очередь видовая специфичность организмов. Таким образом, специфическое воспроизведение белковых тел в природе представляет основу, фундамент всего процесса обмена веществ, характерного для того или иного растительного или животного вида.
Проникновение в тончайшие детали белкового обмена, особенно выяснение закономерностей новообразования специфических белков (ферменты, гормоны белковой и пептидной природы и т. п.), дает в руки исследователя ключ к разгадке многих тайн природы, позволяет наметить новые пути управления обменом веществ, а следовательно, найти способы управления развитием организмов, их наследственностью, патологическими процессами в них и т. п. Все это свидетельствует о том, что нет в биохимии и биологии в целом более важной и более сложной проблемы, чем проблема обмена белков.
Показатели белкового обмена.
Общий белок | 65-85 г-л | |
Альбумин | 35-50 г-л | |
Тимоловая проба | 0-6 ед. | |
Серомукоид | 0,13-0,2 ед. | |
Гаптоглобин | 0,9-1,4г-л | |
Креатинин | кровь | 44-115мк моль/л |
Мочевина | моча | 4,4-17,7мк моль/сут. |
Кровь | 2,5-8,3ммоль/л | |
моча | 330-580ммоль/л | |
Клубочковая фильтрация | 80-120мл/мин | |
Канальцевая реабсорция | 97-99% | |
Мочевая кислота | кровь | Жен. 0,16-0,4ммоль/л |
Муж.0,24-0,5ммоль/л | ||
моча | 2,4-6,0ммоль/сут. | |
Уровень ср. молекул | кровь | 0,22-0,26 ед. |
моча | 0,3-0,33 ед. |
Белки (протеины) – биологические высокомолекулярные соединения, синтезируемые живыми клетками. Будучи продуктами жизнедеятельности живых организмов, Б. обеспечивают возможность их существования, развития, созревания и воспроизведения себе подобных в потомстве. Молекулы всех белков построены из углерода, воды, водорода, азота, кислорода и серы. Звеньями в цепи белковых молекул являются аминокислоты. Более 50% сухого веса приходится на долю белков.
Роль белков в организме чрезвычайно разнообразна. Их молекулы высокоспециализированы, каждый белок имеет свои особые физиологические функции, в совокупности определяющие все проявления жизни. Большая группа белков участвует в образовании различных структур организма (структурные белки). Оболочки клеток и их внутренних образований – органелл, а также оболочки нервных стволов состоят из особых нерастворимых белков, образующих сложные соединения с полисахаридами и жирами. Белок эластин входит в состав стенок кровеносных сосудов. Кожа , сухожилия, связки, хрящи, кости содержат белки коллагены. Кератины являются главной составной частью волос, ногтей, перьев, роговых образований.
Белки гормоны участвуют в управлении всеми жизненными процессами организма, его ростом и размножением. Благодаря особому светочувствительному белку родопсину на сетчатке глаза возникает изображение видимых предметов. Мышцы способны сокращаться и расслабляться, потому, что содержат сократительные белки миозин и актин. Именно этим белкам все животные обязаны своей способностью двигаться. Сильнодействующие вещества ядов некоторых животных (змей, насекомых и пр.) и растений, а также токсины бактерий являются белками. Некоторые белки служат запасными питательными веществами. Для этих целей они откладываются в белковой оболочке яиц и в семенах растений. Важной и разнообразной группой белков являются ферменты. Все химические процессы в организме протекают при их участии. Без них невозможны пищеварение, усвоение кислорода, взаимопревращение веществ, образование и выведение конечных продуктов обмена, накопление энергии, свертывание крови и пр. Некоторые группы белков выполняют транспортные функции. Так, заключенный в эритроцитах гемоглобин переносит кислород от легких к различным органам и тканям, где гемоглобин забирает образующуюся углекислоту и переносит ее в легкие, откуда она выводится при дыхании. Белки выполняют и защитные функции. При попадании в кровь болезнетворных бактерий или опасных для организма продуктов их жизнедеятельности в организме вырабатываются антитела – белки иммуноглобулины, принимающие участие в нейтрализации токсичных чужеродных белков или каких- либо других продуктов жизнедеятельности болезнетворных микроорганизмов. Другой формой защитной функции является процесс свертывания крови. В плазме крови растворен белок фибриноген. Он бесцветен и невидим. Но, в том месте, где кровеносный сосуд поврежден, фибриноген быстро полимеризуется, превращается в белые нити фибрина и, выпадая в осадок, закрывает, подобно вате, грозящую кровопотерей рану.
При знакомстве с разнообразием белков и таким несходством их функций весьма неожиданным оказывается то, что все белки – от нерастворимых и химических инертных до растворимых, биологически активных и ядовитых – состоят из одних и тех же аминокислот, соединенных химической (пептидной) связью в линейные полимеры. Существование в природе около 20 различных аминокислот, из которых строятся белки, открывает практически безграничные возможности для варьирования последовательности аминокислот в цепях.
Полипептидная цепь каждого белка построена из свойственных этому белку аминокислот. Для каждого белка характерна определенная последовательность аминокислот и их число. Уникальность свойств белковых молекул объясняется порядком чередования в них аминокислот. Два белка с одинаковым или близким аминокислотным составом, но с различной последовательностью аминокислотных остатков обладают совершенно разными свойствами, не только химическими, но и биологическими. Даже перестановка всего лишь одного остатка аминокислоты на другое место в аминокислотной цепочке белковой молекулы ведет к очень значительному изменению свойств белка.
Структуру белковой молекулы, поддерживаемую пептидными связями, соединяющими остаток каждой аминокислоты с соседними и формирующими аминокислотную цепь, называют первичной. Полипептидные (аминокислотные) цепи образуют два вида упорядоченных конфигураций: спираль и «пучки» аминокислотных цепей, лежащих параллельно друг другу (спираль альфа). Эта структура белковых молекул носит название вторичной. Наиболее сложные и тонкие особенности структуры, отличающие один белок от другого, связаны с пространственной организацией белковой молекулы. Эту пространственную организацию называют третичной структурой. Если аминокислотную цепь белка вытянуть в прямую линию, то она оказалась бы длинной и тонкой. Однако мы знаем, что у большинства природных белков молекулы компактные, округлые. Они компактны, потому что аминокислотные цепи свернуты. Химики называют такой клубок «глобулой». Она образуется строго закономерно, малейшее отклонение от закономерностей ее свертывания влечет за собой изменения свойств белка, часто весьма значительные.
Молекулы некоторых белков состоят из нескольких глобул, которые, лишь будучи соединены вместе, обеспечивают проявление характерных для таких белков свойств. Глобулы, составляющие одно целое – молекулу активного белка, могут быть одинаковыми или разными. Они носят название субъединиц и определяют четвертичную структуру белка. Субъединичную структуру имеют молекулы гемоглобина, многих ферментов и др. белков.
Синтез белков в живом организме представляет собой сложнейший процесс, в котором участвуют нуклеиновые кислоты и большое количество специальных ферментов.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--