Реферат: Ансамбли различаемых сигналов. Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов

который зависит от априорных вероятностей наличия и отсутствия сигнала и стоимостей принятия К-го решения при условии.

При этом правило решения выглядит следующим образом:

если , то принимается решение ,

если , то принимается решение ,

Аналогично при решении многоальтернативной задачи распозна­вания-различения с позиций минимального среднего риска правило решения определяется следующим выражением:

еслито

отношение правдоподобия зашумленного портрета (сигнала) К-го класса на фоне зашумленного портрета (сигнала) -го класса,

- порог сравнения отношения правдоподобия ,

- многомерная плотность вероятности комплексных амплитуд принятого сигнала по элементам пространства распознавания (различения) при условии наличия порт­рета (сигнала) К-го класса

- фоновая (помеховая) составляющая принятого сигнала по элементам пространства распознавания (различения),

- априорные вероятности появления портретов (сигналов) К-го класса.

Полагая стоимости правильных решений равными нулю , стоимости ошибочных решений одинаковыми , а появление портретов (сигналов) разных классов равновероятным , правило решения представляется в виде:

еслидля всех то

Процедура принятия решения согласно этому правилу состоит в следующем. Производится обработка комплексных амплитуд , принятого сигнала по элементам пространства распознавания (различения) в соответствии с алгоритмом, рекомендуемым отношением прав­доподобия . Номер "К", при котором случайная величина - от­ношение правдоподобия окажется больше единицы для всех и является номером гипотезы, которую можно принять с наименьшим средним риском. Таким образом, решение принимается на основе по­следовательной проверки всех гипотез путем сравнения каждой из них со всеми остальными.

Для того чтобы с наименьшим риском ответить на вопрос о наличии портрета (сигнала) 1-го класса, необходимо проверить отношения правдоподобия для всех (их число равно М-1). Если все окажутся больше единицы, то при наименьшем среднем риске следует принять гипотезу о наличии портрета (сигна­ла) 1-го класса. Если неравенства не соблюдены, то проверяются аналогичным образом отношения правдоподобия

и т.д., вплоть до . Максимально возможное число проверок равно таким образом M(M-1).

Процедуру принятия решения можно существенно упростить. Дей­ствительно, представив правило решения в виде:

если> , то,

и, разделив левую и правую части неравенства на многомерную плот­ность вероятности комплексных амплитуд принятого сигнала по эле­ментам пространства распознавания (различения) при условии отсут­ствия всякого портрета (сигнала) , когда , находим правило решения в несколько иной форме:

еслито, где

- отношение правдоподобия зашумленного портрета (сигнала) К-го класса. Это правило решения прежде всего убеждает в том, что число проверок сокращает­ся до числа проверяемых гипотез М-1. Во-вторых, это правило реше­ния убеждает в преемственности задач обнаружения и распознавания. В самом деле, левая и правая части неравенства (правила решения) свидетельствуют о том, что вначале необходимо осуществить опти­мальную пространственно-временную и поляризационную обработку каж­дого элемента портрета (n =1,… N )в соответствии с алгоритмом, рекомендуемый отношением правдоподобия

и, распределив комплексные амплитуда принятого сигнала по алимен­там пространства распознавания (различения) осуществить совмест­ную обработку элементов каждого К-го портрета (сигнала) (k =1,… M ) в соответствии с алгоритмом, рекомендуемым отношением правдоподобия

.

Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов.

Согласно решающего правила устройство рас­познавания М портретов должно состоять из устройства пространствен­но-временной и поляризационной обработки принятого сигнала по всем N элементам пространства распознавания, устройства распределе­ния комплексных амплитуд принятого сигнала по элементам простран­ства распознавания (устройства формирования портрета), М каналов устройств оптимальной обработки всех К -х портретов (К=1,2...М), устройства сравнения и принятия решения (рис. 5).

Рассмотрим два крайних случая: оптимальную обработку некор­релированных портретов (дальностный, картинный, доплеровский) и оп­тимальную обработку сильно коррелированных портретов (частотно-ре­зонансный, поляризационный).

К-во Просмотров: 247
Бесплатно скачать Реферат: Ансамбли различаемых сигналов. Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов