Реферат: Антипростые числа

Из графика на рис. 5 и из предыдущего пункта при больших m получаем гипотезу t(т).

В таблице 2 (см Приложение Г) приведено сравнение значений функций t(m), f(m)= и y(x)= до m= 1500000 и вычислена средняя ошибка приближения.

Средняя ошибка приближения функции t(m) к функции f(m)= составила 1,185812%, а к функции y(x)=– 0,280031%.

Исследование функции t(k, т) = p(k, т)/(т – k +1) – частоты встречаемости антипростых чисел на отрезке [k, т], не позволило выявить закономерностей. Ясно лишь, что она при любом m принимает значения от 0 до 1. Всего различных значений не более m+1, а при m > 3 не более m и среди них будет 1. Есть гипотеза (строго это не доказано), что t(k, т) не периодическая функция. Это также будет следовать из доказанной ниже теоремы 5.


2 Обобщения об антипростых числах

Цель данной работы не только решить поставленные на турнире задачи, но и предложить свои вопросы для исследования задачи об антипростых числах и исследовать их.

Докажем ряд теорем, которые могут представлять интерес при исследовании антипростых чисел.

Теорема 1. Любое нечетное число можно представить как разность двух антипростых чисел.

Доказательство:

Заметим, что 1 = 9 – 8 и 3 = 128 – 125. Пусть теперь 2p+ 1 – произвольное нечетное число и p > 1. Тогда числа p2 и (p+ 1)2 – антипростые. Их разность, как легко заметить, равна 2p+ 1.

Теорема 2. Любое натуральное число, делящееся на 4, можно представить как разность двух антипростых чисел.

Доказательство: Заметим, что 4 = 8 – 4 и 8 = 16 – 8. Пусть теперь 4p – произвольное число, делящееся на 4 и p > 2. Тогда числа (p– 1)2 и (p+ 1)2 – антипростые. Их разность, как легко заметить, равна 4p.

Теорема 3 . Существует отрезок любой длины в натуральном ряду, на котором нет антипростых чисел.

Доказательство: Рассмотрим систему сравнений:

(–простые числа и ).


Если данная система имеет решения, то тогда получим последовательность чисел длины такую, что каждый её член делится на (), но не делится на , то есть не является антипростым числом. Но данная система имеет решения по Китайской теореме об остатках (числа попарно взаимно простые).

Значит существует отрезок любой длины в натуральном ряду, на котором нет антипростых чисел.

Примечание. Китайская теорема об остатках[6].

Если – попарно взаимно простые числа, – такие числа, что , то существует такое число , что при всех .

Также нам понадобиться следующий известный факт:

Лемма. Пусть НОД(b;d) = 1. Тогда найдется бесконечно много членов арифметической (геометрической) прогрессии с начальным членом 1 и разностью (знаменателем) b сравнимых с 1 по модулю d.

Теорема 4. В любой арифметической прогрессии (a0 ,dÎN, a0 > 0), у которой НОД(a0 ;d) – антипростое или 1, бесконечно много антипростых чисел.

Доказательство:

Пусть НОД(a0 ;d) = 1. Рассмотрим арифметическую прогрессию с членами вида a0 + a0 kd. Каждый ее член является членом исходной арифметической прогрессии. При члены этой прогрессии антипростые числа. Но согласно лемме, найдется бесконечно много таких k. Следовательно, прогрессия содержит бесконечно много антипростых чисел.

В случае, когда НОД(a0 ;d) – антипростое, рассуждения аналогичны.

Теорема 5. Не существует арифметической прогрессии (,) состоящей только из антипростых чисел или такой у которой после n-ого члена все члены – антипростые числа.

Доказательство:

Если все члены арифметической прогрессии (разность , ) после -ого члена () – антипростые числа, то взяв арифметическую прогрессию с и разностью , получим арифметическую прогрессию, состоящую только из антипростых чисел.

К-во Просмотров: 659
Бесплатно скачать Реферат: Антипростые числа