Реферат: Асимптотические методы исследования нестационарных режимов в сетях случайного доступа
следовательно, в нестационарном режиме, эти вероятности удовлетворяют системе дифференциально-разностных уравнений
,
, (1.1)
,
где ,
решить которую практически невозможно, но можно решить асимптотически в условиях «большой загрузки», т.е. при , , где пропускная способность исследуемой сети связи (верхняя граница множества тех значений загрузки , для которых в системе существует стационарный режим).
Рассмотрим исходную систему уравнений (1.1) и произведем в ней замену переменных: , , , . В результате замены производится переход от дискретной переменной к непрерывной переменной . В новых обозначениях производная равна .
Тогда систему (1.1) перепишем
,
, (1.2)
Получим вид решения системы (1.2), которую будем решать в три этапа.
1 этап. В уравнениях (1.2) устремим и обозначим , заметим что, . Будем иметь
,
, (1.3)
.
Выразим через и получим
,
, (1.4)
.
где – асимптотическая плотность распределения вероятностей нормированного числа заявок в ИПВ.
Введем обозначения
(1.5)
( - это асимптотическая вероятность того, что обслуживающий прибор находится в состоянии k ). Из системы (1.3) следуют равенства, связывающие , , и выглядят так
(1.6)
.
Найдем вид функции . Для этого перейдем ко второму этапу.
2 этап . Неизвестные функции будем искать с точностью до в следующем виде
, (1.7)
Определим вид функций , для этого в системе уравнений (1.2) разложим функции с аргументом в ряд по приращению аргумента (ограничиваясь двумя слагаемыми), будем иметь
,
, (1.8)
В полученные уравнения подставим в форме (1.7), заменим разностью , сумму на G и не учтем слагаемые, имеющие порядок . Получим