Реферат: Асимптотические методы исследования нестационарных режимов в сетях случайного доступа

В уравнения (2.15) подставим в форме (2.14), приведем подобные и получим систему неоднородных линейных алгебраических уравнений относительно вида

,

, (2.16)

Нетрудно увидеть, что между уравнениями этой системы есть зависимость и ранг матрицы системы равен, следовательно, чтобы решение уравнений (2.16)существовало, необходимо выполнение равенства

(2.17)

Из однородного линейного уравнения с частными производными первого порядка (2.9) мы знаем, что . Таким образом, можно сделать вывод, что система (2.16) разрешима. При условии, что функция известна, решение можно записать в виде

,

(2.18)

Теперь все готово, для того, чтобы найти функцию . Перейдем к третьему этапу.

3 этап . В системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • К-во Просмотров: 435
    Бесплатно скачать Реферат: Асимптотические методы исследования нестационарных режимов в сетях случайного доступа