Реферат: Атф индуцированное изменение внутриклеточной концентрации кальция в нейронах неокортекса крыс

P2u

P2d

Таблица 1. Классическая схема субклассификации пурино-рецепторов.

2.2.5 Реклассификация пуринорецепторов.

Из - за всевозрастающих трудностей и несогласований в классической схеме классификации Ð2 пуринорецепторов и увеличивающемся числе подтипов рецепторов, стало очевидным, что классическая схема требует пересмотра. В 1994 году Abbracchio and Burnstock предложили новую схему классификации Р2 - пуринорецепторов. Из всех Р2 - пуринорецепторов они вычленили три основных семейства: Р2Х семейство, связанное с ионотропными каналами, которое включало четыре подтипа; Р2У - связанное с активацией G - белков, включающее семь подтипов и семейство Р2Z - семейство неселективных пор. Их гипотеза основывалась в основном на изучении литературных источников и анализе фармакологического профиля новообнаруженныж агонистов. В дальнейшем теория подтвердилась клонированием различных подтипов Р2 - пуринорецепторов. В настоящее время семейство Р2Х насчитывает шесть, а Р2У - семь подклассов. Благодаря интенсивным исследованиям, практически не остается сомнений в том, что данные семейства будут расти и дальше (Collo et al 1996).

Р2 - пуринорецепторы

P2Z - неселективные поры

Р2Х - семейство

ионотропных

рецепторов

Р2У - семейство

метаботропных

рецепторов

Р2Х1

Р2Х2

Р2Х3

Р2Х4

Р2Х5

Р2Х6

Р2У1

Р2У2

Р2У3

Р2У4

Р2У5

Р2У6

Р2У7

Таблица 2. Современная классификация Р2 типа пуринорецепторов.


3. ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЙ

3.1 Подготовка препарата

Исследования проводились на пирамидальных нейронах моторной области новой коры в тонких срезах мозга, выделенного из 14 дневных крыс. После декапитации мозг помещался в холодный солевой раствор (0 - 40 С). Процедура от начала декапитации до выделения мозга длилась не более 60-90 секунд. Затем мозг закреплялся полиакриламидным клеем на подложке вибротома (Campden, Campden Instruments LTD, U.K.); камера вибротома заливалась холодным солевым раствором. Срезы нарезались сагитально толщиной 250 - 300 мкм; скорость подачи лезвия - 1 см/с с частотой 10 Гц. После приготовления срезы помещались в раствор постоянно насыщаемый карбогеном (5% СО2 + 95% О2 ). Перед загрузкой флуоресцентным красителем срезы инкубировались в постоянно оксигенируемом растворе 30 минут при температуре 32 градуса. Окраска среза осуществлялась в течении 30 - 35 минут в СО2 насыщенном термостате при температуре 35 градусов. После окраски срезы отмывались 1 - 1,5 часа в постоянно оксигенируемом растворе при комнатной температуре. Все эксперименты проводились при температуре 32 градуса.

3.2 Характеристики кальциевого зонда

Для количественного определения концентрации кальция в пирамидальных нейронах моторной области новой коры использовался краситель Фура-2 AM (рисунок 2) (16).

На рисунке 3 представлен спектр зонда Фура -2 AM. При связывании с кальцием происходит характерное изменение спектра возбуждения этого красителя: при возбуждении светом с длиной волны 390 нм происходит уменьшение флуоресценции, а при возбуждении светом, с длиной волны 340 нм - увеличение. Однако, 340 нм является уже ультрафиолетовым светом, и для ее использования необходим микроскоп с кварцевыми линзами. Поскольку в нашем случае был использован обычный микроскоп, то вторая волна была выбрана длиной 390 нм. 360 нм - это изобестическая точка зонда Фура -2, т.е. флуоресцентный сигнал при возбуждении светом этой длины волны не зависит от концентрации Ca2+ и есть функция лишь концентрации зонда.

Измерение флуоресценции при возбуждении двумя длинами волн позволяет легко рассчитать [Ca2+]i в клетке по формуле (24):

[Ca2+]i= Kd * b * (R - Rmin )/(Rmax -R)

где Кd - константа диссоциации комплекса Фура -2 с кальцием, R=F360 /F390 - текущее отношение флуоресцентных сигналов, Rmin = F360 /F390 |Ca0 - то же отношение в растворе с низкой концентрацией Ca2+, Rmax = F360 /F390 |CaҐ - то же отношение в растворе с высокой концентрацией Ca2+, b = F390 |Ca0/F390 |CaҐ - отношение флуоресцентных сигналов в низкой и высокой концентрации Ca2+ при возбуждении длиной волны 390 нм. Параметры Rmin , Rmax и b определяли экспериментально. Для этого были приготовлены базовый раствор (в ммоль/л) : KCl - 100, Tris-Cl - 10 (pH=7.2), Фура -2 - 0.005; раствор с низкой концентрацией Ca2+ готовился без добавления Ca2+ с добавкой EGTA - 10; раствор с высокой концентрацией Ca2+ - с добавкой CaСl2 - 10. Отношение величин флуоресценции определялось в каплях приведенных выше растворов, помещенных на дно экспериментальной камеры. В результате для нашей системы Rmin = 0.33, Rmax = 8.9 и b=12.8. Параметр Кd был взял из работы [Grinkiewicz et al, 1985] и равнялся 224 нмоль/л.

3.3 Окраска срезов флуоресцентным красителем

Для введения кальций - чувствительного зонда в клетку, срезы инкубировались в растворе Тироде, содержащим эстерифицированную незаряженную форму красителя Фура-2 ацетоксиметилэстер в концентрации 5 мкмоль/л, растворенную в диметилсульфоксиде с добавлением детергента Плуроник F-127 (0.02%). В такой форме краситель проникает в клетку, затем эндогенными эстеразами эфирные группы отщепляются, зонд становится заряженным и покинуть клетку не может. Окраска производилась 20 минут при температуре 35о С. Концентрация зонда в клетке определялась путем титрования окрашенных клеток раствором красителя, который добавлялся во внеклеточный раствор. Оцененная таким способом концентрация зонда в клетке была в диапазоне 30 - 70 мкмоль/л.

3.4 Структура экспериментальной установки для двух-волнового измерения концентрации кальция

Принципиальная схема установки представлена на рисунке 4. Основными элементами ее являются: источник света, система смены фильтров, микроскоп, ФЭУ, модуль предварительной обработки сигнала и компьютер.

Источником возбуждающего света служит ртутная лампа мощностью 50 ватт. Поскольку в качестве кальций - чувствительного зонда использовали индикатор Фура -2 АМ, являющийся по возбуждению двухволновым (см. выше), то для количественного определения [Ca2+]i необходимо было одновременно индуцировать флуоресценцию обеими длинами волн. В нашей конфигурации периодическая смена фильтров возбуждения была реализована при помощи вращения колеса с вмонтированными в него двумя интерференционными фильтрами 360 и 390 нм. Частота вращения была 5 Гц. Управление системой смены фильтров осуществлялось при помощи кальций - измерительного модуля фирмы Luigs und Neumann, Германия. Этот же модуль являлся интерфейсом предварительной обработки.

Оптическая часть установки была смонтирована на базе микроскопа Axioskop, Zeiss. Разделение потоков возбуждающего света и флуоресценции производилось при помощи дихроического зеркала. Свет, прошедший через фильтр для возбуждения флуоресценции, отклонялся дихроическим зеркалом и при помощи высокоаппертурного иммерсионного объектива (40*, апертура 0.75) фокусировался на объекте. Флуоресцентный свет проходил через соответствующий интерференционный фильтр и подавался на фотоэлектронный умножитель (ФЭУ). Для уменьшения уровня шумов фиксированная диафрагма (1 мм) была расположена перед ФЭУ. В результате флуоресцентный сигнал собирался с фокальной плоскости диаметром 50 мкм, что позволило значительно улучшить соотношение сигнал/шум.

Модуль предварительной обработки позволял производить компенсацию автофлуоресценции и, при необходимости, усиливать сигнал, после чего он оцифровывался при помощи цифрового интерфейса TIDA и обрабатывался компьютером при помощи программ Tida 5.0 и Wintida, разработанных в Гейдельберге, Германия.

Рисунок 4. Принципиальная схема экспериментальной установки для двухволнового измерения кальция.

3.5 Растворы и смена растворов

К-во Просмотров: 215
Бесплатно скачать Реферат: Атф индуцированное изменение внутриклеточной концентрации кальция в нейронах неокортекса крыс