Реферат: Автокорреляция и ее устранение
Можно показать, что аппроксимируется выражением
.
Критерий Дарбина – Уотсона – метод обнаружения автокорреляции первого порядка с помощью статистики Дарбина – Уотсона.
Статистика критерия Дарбина – Уотсона вычисляется по формуле:
, где ek – остатки в наблюдениях авторегрессионной схемы первого порядка uk+1 = сuk + ee k+1.
Значение DW-статистики будем обозначать также через d.
Критерий Дарбина – Уотсона обнаруживает только ярко выраженную автокорреляцию первого порядка и лишь при отсутствии лаговых переменных в регрессии.
Если автокорреляция отсутствует, то p = 0, и поэтому величина d должна быть близкой к двум. При наличии положительной автокорреляции величина будет меньше двух; при отрицательной автокорреляции она будет превышать 2. Так как p должно находиться между значениями 1 и – 1, то d должно лежать между 0 и 4 [8, C.46].
Критическое значение d при любом данном уровне значимости зависит от числа объясняющих переменных в уравнении регрессии и от количества наблюдений в выборке. К сожалению, оно также зависит oт конкретных значений, принимаемых объясняющими переменными. Поэтому невозможно составить таблицу с указанием точных критических значений для всех возможных выборок, как это можно сделать для t- и F-статистик; но можно вычислить верхнюю и нижнюю границы для критического значения d. Для положительной автокорреляции они обычно обозначаются как dU и dL.
На схеме 1.1 представлена данная ситуация. Стрелка указывает критический уровень d, который обозначается как dкрит. Если знать значение dкрит, то можно сравнить с ним значение d, рассчитанное для регрессии. Если бы оказалось, что d dкрит, то невозможно было бы отклонить нулевую гипотезу об отсутствии автокорреляции. В случае d
dкрит возможно отклонить нулевую гипотезу и сделать вывод о наличии положительной автокорреляции.
Схема 1.1 Тест Дарбина – Уотсона на автокорреляцию (положительная автокорреляция)
Вместе с тем знаем только, что dкрит находится где-то между dL и dU. Это предполагает наличие трех возможностей.
1. Величина d меньше, чем dL. В этом случае она будет также меньше, чем dкрит, и поэтому делаем вывод о наличии положительной автокорреляции.
2. Величина d больше, чем dU. В этом случае она также больше критического уровня, и поэтому невозможно отклонить нулевую гипотезу.
3. Величина d находится между dL и dU. В этом случае она может быть больше или меньше критического уровня. Поскольку нельзя определить, которая из двух возможностей налицо, невозможно ни отклонить, ни принять нулевую гипотезу.
В случаях 1 и 2 тест Дарбина—Уотсона дает определенный ответ, но случай 3 относится к зоне невозможности принятия решения, и изменить создавшееся положение нельзя [6, C.18].
Таким образом, зона неопределенности критерия Дарбина – Уотсона – промежуток значений статистики Дарбина–Уотсона, при попадании в который критерий не дает определенного ответа о наличии или отсутствии автокорреляции первого порядка.
Проверка на отрицательную автокорреляцию проводится по аналогичной схеме, причем зона, содержащая критический уровень, расположена симметрично справа от 2. Так как отрицательная автокорреляция встречается относительно редко, предполагается, что при необходимости самостоятельно вычисляются границы зоны на основе соответствующих значений для положительной автокорреляции при данном числе наблюдений и объясняющих переменных. Как показано на Схеме 1.2 величина (4 - dU) есть нижний предел, ниже которого признается отсутствие автокорреляции, а (4 - dL) — верхний предел, выше которого делается вывод о наличии отрицательной автокорреляции.
Схема 1.2 Тест Дарбина – Уотсона на автокорреляцию (отрицательная автокорреляция)
2 Поправка Прайса–Уинстена и метод Кохрейна–Оркатта устранения автокорреляции
Наилучший, но не всегда возможный, способ устранения автокорреляции – установление ответственного за нее фактора и включение соответствующей объясняющей переменной в регрессию.
В других случаях процедура, которую следует принять для устранения автокорреляции, будет зависеть от характера зависимости между значениями случайного члена. В литературе наибольшее внимание уделяется авторегрессионной схеме первого порядка uk+1= puk + ek+1, так как она интуитивно правдоподобна, но для того, чтобы было целесообразным ее использование в более сложных моделях, оснований обычно не хватает. Вместе с тем если наблюдения проводятся ежеквартально или ежемесячно, могут оказаться более подходящими другие модели.
Если бы уравнение uk+1= puk + ek+1 было правильной спецификацией для измерения величины случайного члена, то возможно было бы полностью устранить автокорреляцию, если бы знали величину p. Это будет продемонстрировано на примере уравнения регрессии, включающего только одну объясняющую переменную, однако при большем их числе действует тот же принцип [9, C.91].
Предположим, что истинная модель задается выражением ,
так что наблюдения t и t - 1 формируются как .
Теперь вычтем из обеих частей уравнения умноженное на p соотношение
и получим:
.
Обозначим
и
.
Тогда формулу можно переписать как