Реферат: Автокорреляция и ее устранение
Введение
Автокорреляция обычно встречается в регрессионном анализе при использовании данных временных рядов. Естественно, что при создании модели разработчик не в состоянии учесть все факторы, влияющие на зависимую переменную. Воздействию этих неучтенных факторов подвергается случайный член u уравнения регрессии. Для того, чтобы выполнялось третье условие Гаусса-Маркова, то есть cov(uk,ui)=0, при k ≠ j , необходимо, чтобы скрытые в u факторы тоже были некоррелированные со своими значениями в предыдущих наблюдениях.
Естественно, что в большинстве реальных экономических задач условие некоррелированности ошибок невыполнимо.
Наличие автокорреляции затрудняет применение ряда классических методов анализа временных рядов. В моделях регрессии, описывающих зависимости между случайными значениями взаимосвязанных величин, она снижает эффективность применения метода наименьших квадратов. Поэтому выработаны и применяются специальные статистические приемы для ее выявления и элиминирования, а также для модификации самого метода наименьших квадратов.
Данная работа посвящена автокорреляции и ее устранению.
Целью реферата является осветить вопросы, касающиеся понятия автокорреляции.
Задачами реферата являются:
раскрыть определение автокорреляции;
рассмотреть автокорреляцию первого порядка;
рассмотреть способы устранения автокорреляции.
1 Автокорреляция и ее устранение
До сих пор предполагалось, что значение случайного члена u в любом наблюдении определяется независимо от его значений во всех других наблюдениях, то есть предполагалось, что удовлетворено третье условие Гаусса – Маркова.
Автокорреляция – нарушение третьего условия Гаусса – Маркова, которое заключается в том, что случайные члены регрессии в разных наблюдениях являются зависимыми: cov(uk,ui) №_ 0, при k №_ i.
Последствия автокорреляции в некоторой степени сходны с последствиями гетероскедастичности. Коэффициенты регрессии остаются несмещенными, но становятся неэффективными, и их стандартные ошибки оцениваются неправильно (чаще всего они смещаются вниз, то есть занижаются).
Автокорреляция обычно встречается только в регрессионном анализе при использовании данных временных рядов. Случайный член u в уравнении регрессии подвергается воздействию тех переменных, влияющих на зависимую переменную, которые не включены в уравнение регрессии. Если значение u в любом наблюдении должно быть независимым от его значения в предыдущем наблюдении, то и значение любой переменной, “скрытой” в u, должно быть некоррелированным с ее значением в предыдущем наблюдении.
Положительная автокорреляция – ситуация, когда случайный член регрессии в следующем наблюдении ожидается того же знака, что и случайный член в настоящем наблюдении. Соответствует случаю .
Постоянная направленность воздействия не включенных в уравнение переменных является наиболее частой причиной положительной автокорреляции — ее обычного для экономического анализа типа. Предположим, что оцениваем уравнение спроса на мороженое по ежемесячным данным и что состояние погоды является единственным важным фактором, “скрытым” в u. Вероятно, будет несколько последовательных наблюдений, когда теплая погода способствует увеличению спроса на мороженое u, таким образом, u положительно, и после этого — несколько последовательных наблюдений, когда ситуация складывается противоположным образом, после чего идет еще один ряд теплых месяцев.
Если доход постоянно возрастает со временем, схема наблюдений может быть такой, как показано в Приложении 1. При обозначении объема продаж мороженого через у и дохода через х имеет место трендовая зависимость, отражающая рост объема продаж: у = +
х. Фактические наблюдения будут в основном сначала находиться выше линии регрессии, затем ниже ее и затем опять выше [7, C.36].
Изменения экономической конъюнктуры часто приводят к похожим результатам, особенно наглядным в макроэкономическом анализе, и в литературе о циклах деловой активности есть много таких примеров.
Здесь важно отметить, в частности, что автокорреляция в целом представляет тем более существенную проблему, чем меньше интервал между наблюдениями. Очевидно, что чем больше этот интервал, тем менее правдоподобно, что при переходе от одного наблюдения к другому характер влияния неучтенных переменных будет сохраняться.
Если в примере с мороженым наблюдения проводятся не ежемесячно, а ежегодно, то автокорреляции, вероятно, вообще не будет. Маловероятно, чтобы совокупное влияние погодных условий в одном году корреллировало с аналогичным влиянием в следующем году [5, C.29].
Автокорреляция может также быть отрицательной.
Отрицательная автокорреляция – ситуация, когда случайный член регрессии в следующем наблюдении ожидается знака, противоположного знаку случайного члена в настоящем наблюдении. Соответствует случаю .
Это означает, что корреляция между последовательными значениями случайного члена отрицательна. В этом случае, скорее всего, за положительным значением в одном наблюдении идет отрицательное значение в следующем, и наоборот; диаграмма рассеяния при этом выглядит так, как показано в Приложении 2.
Здесь снова предполагается, что х со временем растет. Линия, соединяющая последовательные наблюдения друг с другом, будет пересекать линию, показывающую зависимость между у и х, чаще, чем можно было ожидать, если бы значения случайного члена не зависели друг от друга.
В экономике отрицательная автокорреляция встречается относительно редко. Но иногда она появляется при преобразовании первоначальной спецификации модели в форму, подходящую для регрессионного анализа.
Автокорреляция первого порядка – ситуация, когда коррелируют случайные члены регрессии в последовательных наблюдениях: .
Авторегрессионная схема первого порядка – частный случай автокорреляции первого порядка, когда зависимость между последовательными случайными членами описывается формулой: uk+1= puk + ek+1, где p – константа, ek+1 – новый случайный член [2, C.55].
Это означает, что величина случайного члена в любом наблюдении равна его значению в предшествующем наблюдении умноженному на p, плюс новый . Данная схема называется авторегрессионной, поскольку и определяется значениями этой же самой величины с запаздыванием, и схемой первого порядка, потому что в этом простом случае максимальное запаздывание равно единице. Предполагается, что значение в каждом наблюдении не зависит от его значений во всех других наблюдениях. Если p положительно, то автокорреляция положительная; если p отрицательно, то автокорреляция отрицательная. Если p = 0, то автокорреляции нет и третье условие Гаусса—Маркова удовлетворяется.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--