Реферат: Автокорреляция и ее устранение

Вместе с тем из уравнения uk+1= puk + ek+1 имеем . Таким образом, фор­мула принимает вид:

Если p известно, тогда можно вычислить величины , , и (последняя одинакова для всех наблюдений) для наблюдений, включающих от 2 до Т исходных данных. Если теперь оценить регрессию между , , и (за­метим, что в уравнение не должна включаться постоянная), то будут получены оценки и , не связанные с проблемой автокорреляции, поскольку, согласно предположению, значения е не зависят друг от друга.

Остается небольшая проблема. Если в выборке нет данных, пред­шествующих первому наблюдению, то невозможно вычислить , и по­теряется первое наблюдение. Число степеней свободы уменьшается на единицу, и это вызовет потерю эффективности, которая может в небольших выборках пе­ревесить повышение эффективности от устранения автокорреляции [4, C.72].

Эту проблему можно довольно легко обойти, пользуясь так поправкой Прайса – Уинстена.

Поправка Прайса–Уинстена – метод спасения первого наблюдения в автокорреляционной схеме первого порядка.

Случайный член , согласно определению, не зависит от значения и в любом предшествующем на­блюдении. В частности, все величины не зависят от u1. Следовательно, если при устранении автокорреляции все другие наблюдения преобразуются, то не требуется преобразовывать первое наблюдение. Можно сохранить его, включив в новую схему, полагая, что

Таким способом возможно спасти первое наблюдение, но здесь есть неболь­шая проблема, которую требуется решить. Если p велико, то первое наблюде­ние будет оказывать непропорционально большое воздействие на оценки, ис­численные по уравнению регрессии. Чтобы нейтрализовать этот эффект, умень­шим вес данного наблюдения умножением его на величину , полагая и

Конечно, на практике величина р неизвестна, его оценка получается одновременно с оценками и . Имеется несколько стандартных способов такого оценивания, например, метод Кокрана - Оркатта.

Метод Кокрана–Оркатта – компьютерный итерационный метод устранения автокорреляции первого порядка.

Метод Кокрана–Оркатта с поправкой Прайса – Уинстена итерационно оценивает a, b1, b2, .. bm и коэффициент r в авторегрессионной схеме, пока разница между результатами итераций не станет очень малой. Реализуется только на компьютере.

Метод Кокрана – Оркатта включает следующие этапы.

1. Оценивается регрессия с исходными непреобразованными дан­ными.

2. Вычисляются остатки.

3. Оценивается регрессионная зависимость еt от еt-1, соответствующая формуле uk+1= puk + ek+1, и коэффициент при еt-1, представляет собой оценку p .

4. С этой оценкой р уравнение преобразуется в , оценива­ние которого позволяет получить пересмотренные оценки и .

5. Повторно вычисляются остатки, и процесс возвращается к этапу.


Заключение


При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.

Последовательность коэффициентов автокорреляции уровней первого, второго и других порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, то есть при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Наилучший, но не всегда возможный, способ устранения автокорреляции – установление ответственного за нее фактора и включение соответствующей объясняющей переменной в регрессию.


Глоссарий


№ п/п Новое понятие Содержание
1 2 3
1 Автокорреляция нарушение третьего условия Гаусса – Маркова, которое заключается в том, что случайные члены регрессии в разных наблюдениях являются зависимыми: cov(uk,ui) №_ 0, при k №_ i.
2 Автокорреляция первого порядка

ситуация, когда коррелируют случайные члены регрессии в последовательных наблюдениях: .

3 Авторегрессионная схема первого порядка частный случай автокорреляции первого порядка, когда зависимость между последовательными случайными членами описывается формулой: uk+1= puk + ek+1, где p – константа, ek+1 – новый случайный член.
4 Зона неопределенности критерия Дарбина – Уотсона промежуток значений статистики Дарбина–Уотсона, при попадании в который критерий не дает определенного ответа о наличии или отсутствии автокорреляции первого порядка.
5 Критерий Дарбина – Уотсона метод обнаружения автокорреляции первого порядка с помощью статистики Дарбина – Уотсона.
6 Лаг запаздывание, экономический показатель, характеризующий временной интервал между двумя взаимосвязанными экономическими явлениями, одно из которых является причиной, а второе - следствием.
7 Метод Кокрана–Оркатта компьютерный итерационный метод устранения автокорреляции первого порядка.
8 Отрицательная автокорреляция ситуация, когда случайный член регрессии в следующем наблюдении ожидается знака, противоположного знаку случайного члена в настоящем наблюдении.
9 Положительная автокорреляция ситуация, когда случайный член регрессии в следующем наблюдении ожидается того же знака, что и случайный член в настоящем наблюдении.
10 Поправка Прайса–Уинстена метод спасения первого наблюдения в автокорреляционной схеме первого порядка.

Список использованных источников


Бывшев В.А. Эконометрика: Учебник. – М.: Финансы и статистика, 2008.

?????????? ?.?. ????????????: ??????? ???????. ? ?.: ?????, 2009.

Давыдов С.Б. Математическое моделирование экономических систем. – М.: Либроком, 2010.

Елисеева И.И. Эконометрика: Учебник. – М.: Экзамен, 2009.

К-во Просмотров: 478
Бесплатно скачать Реферат: Автокорреляция и ее устранение