Реферат: Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде
Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Значение η | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Сила связи | Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента η =0,56, что в соответствии с оценочнойшкалой Чэддока говорит о заметной степени связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия на основе исходных данных (xi , yi ),производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -728,665+1,089х.
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r =0,913 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
1) оценка статистической значимости коэффициентов уравнения а0 , а1 и определение их доверительных интервалов для заданного уровня надежности;
2) определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2 ;
3) проверка значимости уравнения регрессии в целом по F-критерию Фишера;
4) оценка погрешности регрессионной модели.
5.1. Оценка статистической значимости коэффициентов уравнения а0 , а1 и определение их доверительных интервалов
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi ), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1 . Поэтому необходимо:
1. проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
2. определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0 , а1 для генеральной совокупности предприятий.
Для анализа коэффициентов а0 , а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0 , а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;
– доверительные интервалы коэффициентов с уровнем надежностиР=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.
5.1.1 . Определение значимости коэффициентов уравнения