Реферат: Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде

Выполнил: ст. III курса гр. 3

Широких Е.Б.

Проверил: доц. Левчегов О.Н.

Липецк 2011 г.

1. Постановка задачи статистического исследования

Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.

В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х ) и результативным признаком Выпуск продукции (признак Y ), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.

Исходные данные
Номер предприятия Среднегодовая стоимость основных производственных фондов, млн.руб. Выпуск продукции, млн. руб.
5 1205,00 945,00
23 1299,50 1255,50
27 1407,50 1080,00
1 1448,00 1390,50
8 1502,00 1485,00
32 1529,00 1566,00
22 1637,00 1336,50
19 1677,50 1282,50
2 1704,50 1525,50
3 1758,50 1701,00
13 1772,00 1809,00
26 1812,50 1660,50
9 1839,50 1741,50
4 1853,00 1890,00
28 1893,50 1687,50
17 1907,00 1728,00
6 1947,50 1620,00
14 1947,50 1971,00
25 1947,50 1755,00
7 2001,50 2187,00
31 2082,50 1755,00
18 2109,50 2052,00
10 2123,00 2173,50
20 2136,50 1755,00
24 2177,00 2011,50
29 2190,50 1849,50
15 2231,00 2389,50
12 2325,50 2295,00
21 2379,50 2362,50
16 2555,00 2565,00

В процессе статистического исследования необходимо решить ряд задач.

1. Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

2. Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.

3. Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η .

4. Построить однофакторную линейную регрессионную модель связи признаков Х и Y , используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r .

5. Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:

а) значимость и доверительные интервалы коэффициентов а0 , а1 ;

б) индекс детерминации R2 и его значимость;

в) точность регрессионной модели.

6. Дать экономическую интерпретацию:

а) коэффициента регрессии а1 ;

б) коэффициента эластичности К Э ;

в) остаточных величин ε i .

7. Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм .


2. Выводы по результатам выполнения лабораторной работы

Задача 1 . Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.

Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.

Вывод:

Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.

Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.

Корреляционная связь важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.

Вывод:

Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y существует корреляционная связь.

Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.

Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой

,

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 214
Бесплатно скачать Реферат: Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде